13 research outputs found

    Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host × Triticum aestivum L. hybrids

    Get PDF
    Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discusse

    Major Differences in the Diversity of Mycobiomes Associated with Wheat Processing and Domestic Environments: Significant Findings from High-Throughput Sequencing of Fungal Barcode ITS1.

    Get PDF
    Occupational exposure to grain dust is associated with both acute and chronic effects on the airways. However, the aetiology of these effects is not completely understood, mainly due to the complexity and variety of potentially causative agents to which workers are exposed during cereals process. In this study, we characterized the mycobiome during different steps of wheat processing-harvesting, grain unloading and straw handling-and compared it to mycobiomes of domestic environments-rural and urban. To do so, settled dust was collected at a six month interval for six weeks in the close proximity of 142 participants, 74 occupationally exposed to wheat dust-freshly harvested or stored-and 68 not occupationally exposed to it. Fungal community composition was determined in those samples by high-throughput sequencing of the primary fungal barcode marker internal transcribed spacer 1 (ITS1). The comparison of different mycobiomes revealed that fungal richness, as well as their composition, was much higher in the domestic environment than at the workplace. Furthermore, we found that the fungal community composition strongly differed between workplaces where workers handled freshly harvested wheat and those where they handled stored wheat. Indicator species for each exposed population were identified. Our results emphasize the complexity of exposure of grain workers and farmers and open new perspectives in the identification of the etiological factors responsible for the respiratory pathologies induced by wheat dust exposure

    DNA damage among wood workers assessed with the comet assay

    Get PDF
    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers' exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products

    Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious <i>Mercurialis annua</i>, a Plant with Homomorphic Sex Chromosomes.

    Get PDF
    Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb &lt;i&gt;Mercurialis annua&lt;/i&gt; , a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for &lt;i&gt;M. annua.&lt;/i&gt; Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of &lt;i&gt;M. annua&lt;/i&gt; pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant

    Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: is the genetic structure affected by natural variation of soil heavy metal concentrations?

    No full text
    * Thlaspi caerulescens (Brassicaceae) is a promising plant model with which to study heavy metal hyperaccumulation. Population genetics studies are necessary for a better understanding of its history, which will be useful for further genomic studies on the evolution of heavy metal hyperaccumulation. * The genetic structure of 24 natural Swiss locations was investigated using nuclear and plastid loci. Population genetics parameters were estimated and genetic pools were identified using Bayesian inference on eight putatively neutral nuclear loci. Finally, the effect of cadmium (Cd) and zinc (Zn) soil concentrations on genetic differentiation at loci located in genes putatively involved in heavy metal responses was examined using partial Mantel tests in Jura, western Switzerland. * Four main genetic clusters were recognized based on nuclear and plastid loci, which gave mostly congruent signals. In Jura, genetic differentiation linked to heavy metal concentrations in soil was shown at some candidate loci, particularly for genes encoding metal transporters. This suggests that natural selection limits gene flow between metalliferous and nonmetalliferous locations at such loci. * Strong historical factors explain the present genetic structure of Swiss T. caerulescens populations, which has to be considered in studies testing for relationships between environmental and genetic variations. Linking of genetic differentiation at candidate genes with soil characteristics offers new perspectives in the study of heavy metal hyperaccumulation
    corecore