19 research outputs found

    A Robust DNA Isolation Protocol from Filtered Commercial Olive Oil for PCR-Based Fingerprinting

    Get PDF
    Extra virgin olive oil (EVOO) has elevated commercial value due to its health appeal, desirable characteristics and quantitatively limited production, and thus it has become an object of intentional adulteration. As EVOOs on the market might consist of a blend of olive varieties or sometimes even of a mixture of oils from different botanical species, an array of DNA-fingerprinting methods have been developed to check the varietal composition of the blend. Starting from a comparison between publicly available DNA extraction protocols, we set up a timely, low-cost, reproducible and effective DNA isolation protocol, which allows an adequate amount of DNA to be recovered even from commercial filtered EVOOs. Then, in order to verify the effectiveness of the DNA extraction protocol herein proposed, we applied PCR-based fingerprinting methods starting from the DNA extracted from three EVOO samples of unknown composition. In particular, genomic regions harboring nine simple sequence repeats (SSRs) and eight genotyping-by-sequencing-derived single nucleotide polymorphism (SNP) markers were amplified for authentication and traceability of the three EVOO samples. The whole investigation strategy herein described might favor producers in terms of higher revenues and consumers in terms of price transparency and food safety

    New Insight into the Identity of Italian Grapevine Varieties: The Case Study of Calabrian Germplasm

    Get PDF
    Calabria is a region located in Southern Italy and it is characterized by a long tradition of viticulture practices and favorable pedoclimatic conditions for grapevine cultivation. Nevertheless, less than 2% of cultivated land is dedicated to grapevine growing in Calabria. The characterization of local grapevine accessions is crucial to valorize the local and peculiar Italian products and boost the Calabrian winemaking sector. With this purpose, we performed a deep characterization of two widespread Calabrian grapevine varieties—Magliocco Dolce and Brettio Nero, of which very little is known. In particular, a genetic and morphological analysis, a berry physico-chemical and polyphenolic compositions assessment, and oenological evaluation of monovarietal wines were carried out. Our results allowed us to demonstrate that Magliocco Dolce and Brettio Nero are unique and distinct varieties with peculiar morphological and chemical characteristics and show the suitability of these two varieties in high-quality wine production. Moreover, the obtained molecular profiles will be useful for authentication and traceability purposes

    Molecular Approaches to Agri-Food Traceability and Authentication: An Updated Review

    No full text
    In the last decades, the demand for molecular tools for authenticating and tracing agri-food products has significantly increased. Food safety and quality have gained an increased interest for consumers, producers, and retailers, therefore, the availability of analytical methods for the determination of food authenticity and the detection of major adulterations takes on a fundamental role. Among the different molecular approaches, some techniques such as the molecular markers-based methods are well established, while some innovative approaches such as isothermal amplificationbased methods and DNA metabarcoding have only recently found application in the agri-food sector. In this review, we provide an overview of the most widely used molecular techniques for fresh and processed agri-food authentication and traceability, showing their recent advances and applications and discussing their main advantages and limitations. The application of these techniques to agrifood traceability and authentication can contribute a great deal to the reassurance of consumers in terms of transparency and food safety and may allow producers and retailers to adequately promote their products

    The Relevance of Discovering and Recovering the Biodiversity of Apulian Almond Germplasm by Means of Molecular and Phenotypic Markers

    No full text
    Almond cultivation has great traditional and economic relevance in Southern Italy, especially in the Apulia region, where almond trees feature an ample and ancient varietal richness. To contrast the loss of plant genetic erosion and to safeguard the available bioresources, as well as to reinforce the local production, the regional Re.Ge.Fru.P. project aimed to re-evaluate, identify, and characterize the Apulian almond germplasm that is still uncharacterized and not jet studied using a dual (genetic and morphological) approach. Collection was conducted in the regional territory of 187 among the most widespread and minor or marginalized genotypes that were molecularly fingerprinted by means of 18 nuclear microsatellites (simple sequence repeats, SSRs). The high number of scored alleles reflected the great level of diversification within the Apulian germplasm, as also confirmed by neighbor joining and structure analysis, that clearly distinguished different genotype clusters. The phenotypic characterization using 17 morphological and phenological descriptors mirrored the genetic results, revealing a high degree of variability. The morphological traits with the best discriminatory ability were nut ventral suture, shell softness and shape and petal color. This work emphasizes the importance of recovering the genetic variability of Apulian almond germplasm, and the need to promote added value and enhance the local agri-food economy

    Biodiversity Evaluation and Preservation of Italian Stone Fruit Germplasm (Peach and Apricot) in Southern Italy

    No full text
    The Prunus genus encompasses a group of economically important and closely related crops, sharing an essentially common genome and, thereby, a high level of conserved and transferable microsatellite (SSR) loci. In Southern Italy, many of the local and/or neglected varieties are abandoned and at risk of extinction due to the high degree of urbanization and agricultural intensification, despite their value as genetic resources for crop improvement. This research aimed to genetically and morphologically characterize the traditional apricot (P. armenica) and peach (P. persica) germplasms collected in old family orchards. Most of the official descriptor categories were scored, thus revealing a rather high level of phenotypic variation in both collections. Genetic data allowed the discovery of diversity masked by morphological traits. Genotyping in 15 and 18 SSRs, eight of which were transferable across both species, showed an average polymorphic informativeness (PIC) of 0.44 and 0.59 for apricot and peach, respectively, and a total of 70 and 144 alleles. A reliable identification of each genotype was achieved, and the presence of possible mislabeling and/or erroneous denominations was solved. These results are encouraging for the valorization of the still poorly explored Italian Prunus germplasm, with significant economic consequences for bioresource conservation and management

    Molecular Traceability Approach to Assess the Geographical Origin of Commercial Extra Virgin Olive Oil

    No full text
    Extra virgin olive oil (EVOO) is a precious and healthy ingredient of Mediterranean cuisine. Due to its high nutritional value, the interest of consumers in the composition of EVOO is constantly increasing, making it a product particularly exposed to fraud. Therefore, there is a need to properly valorize high-quality EVOO and protect it from fraudulent manipulations to safeguard consumer choices. In our study, we used a straightforward and easy method to assess the molecular traceability of 28 commercial EVOO samples based on the use of SSR molecular markers. A lack of correspondence between the declared origin of the samples and the actual origin of the detected varieties was observed, suggesting possible adulteration. This result was supported by the identification of private alleles based on a large collection of national and international olive varieties and the search for them in the molecular profile of the analyzed samples. We demonstrated that the proposed method is a rapid and straightforward approach for identifying the composition of an oil sample and verifying the correspondence between the origin of olives declared on the label and that of the actual detected varieties, allowing the detection of possible adulterations

    The measurement of the left ventricle ejection fraction by a bedside FoCUS examination

    No full text
    The use of point-of-care ultrasound is rapidly increasing in medical practice. This study aims to evaluate the left ventricle systolic function by the bedside focus cardiac ultrasound (FoCUS). We consecutively enrolled n.59 patients of the Emergency Medicine Unit of S. Andrea Hospital. Every patient received a bedside FoCUS examination to estimate the left ventricle (LV) ejection fraction (EF); the LV EF measurements were compared with those obtained by standard echocardiography (as gold standard). The LV EF obtained by the bedside FoCUS examination and the standard echocardiography, resulted, respectively: 50.2 ± 15.1% (by the Quinones equation), 39.5 + 12.0% (by the Lvivo app) and 53.7 + 11.1% (by the standard echocardiography). The correlations between the bedside FoCUS EF measurements versus standard echocardiography were statistically significant: r =  + 0.694 p < 1.9 × 10-6 (Quinones equation, Bland-Altman analysis mean = - 2.3%) and r =  + 0.571 p < 0.01 (Lvivo app, Bland-Altman analysis mean = - 13.3%). In conclusion, the present study showed a high accuracy of the bedside FoCUS EF evaluations, which may support the diagnosis of the heart failure in an emergency setting without delaying. The EF measurements by the operational method are more precise than those obtained by the unselected images of the software application

    Apulian Autochthonous Olive Germplasm: A Promising Resource to Restore Cultivation in <i>Xylella fastidiosa</i>-Infected Areas

    No full text
    The olive tree (Olea europaea subsp. europaea var. europaea) represents the cornerstone crop of Apulian agriculture, which is based on the production of oil and table olives. The high genetic variability of the Apulian olive germplasm is at risk of genetic erosion due to social, economic, and climatic changes. Furthermore, since 2013, the spread of the Gram-negative bacterium Xylella fastidiosa subsp. pauca responsible for the olive quick decline syndrome (OQDS) has been threatening olive biodiversity in Apulia, damaging the regional economy and landscape heritage. The aim of this study was to investigate the differential response to X. fastidiosa infection in a collection of 100 autochthonous Apulian olive genotypes, including minor varieties, F1 genotypes, and reference cultivars. They were genotyped using 10 SSR markers and grown for 5 years in an experimental field; then, they were inoculated with the bacterium. Symptom assessments and the quantification of bacterium using a qPCR assay and colony forming units (CFUs) were carried out three and five years after inoculation. The study allowed the identification of nine putatively resistant genotypes that represent a first panel of olive germplasm resources that are useful both for studying the mechanisms of response to the pathogen and as a reserve for replanting in infected areas

    A Glimpse into the Genetic Heritage of the Olive Tree in Malta

    No full text
    The genetic diversity of the ancient autochthonous olive trees on the Maltese islands and the relationship with the wild forms growing in marginal areas of the island (57 samples), as well as with the most widespread cultivars in the Mediterranean region (150 references), were investigated by genetic analysis with 10 SSR markers. The analysis revealed a high genetic diversity of Maltese germplasm, totaling 84 alleles and a Shannon information index (I) of 1.08. All samples from the upper and the lower part of the crown of the Bidni trees belonged to the same genotype, suggesting that there was no secondary top-grafting of the branches. The Bidni trees showed close relationships with the local wild germplasm, suggesting that the oleaster population played a role in the selection of the Bidni variety. Genetic similarities were also found between Maltese cultivars and several Italian varieties including accessions putatively resistant to the bacterium Xylella fastidiosa, which has recently emerged in the Apulia region (Italy) and has caused severe epidemics on olive trees over the last decade

    Molecular diversity and ecogeographic distribution of Algerian wild olives ( Olea europaea subsp. europaea var. sylvestris )

    No full text
    ABSTRACT: Olive is one of the most important crops in the Mediterranean Basin, because of the olive oil economic value and its role in characterization of the rural landscape. The strong influence of climatic changes on the modern agriculture and the availability of a large source of genetic variability pose as crucial future challenges. Therefore, safeguarding olive genetic resources becomes fundamental, not only in cultivated forms in ex situ collections, but also in terms of wild trees in their natural habitat. In this study, 174 samples of oleaster collected in different parts of Algeria were analyzed by 16 nuclear Simple Sequence Repeats (SSRs). The analysis showed a huge genetic variability in the oleaster, and the STRUCTURE and Principal Coordinate Analyses (PCoA) highlighted clusterization of genotypes according to their geographic origin and bioclimatic conditions. Genotypes adapted to harsh climatic conditions were identified, which could be useful to enrich the panel of olive genotypes for breeding purposes and preserve genetic diversity of this species from erosion risks
    corecore