85 research outputs found

    Acoustic modes in metallic nanoparticles: atomistic versus elasticity modeling

    Full text link
    The validity of the linear elasticity theory is examined at the nanometer scale by investigating the vibrational properties of silver and gold nanoparticles whose diameters range from about 1.5 to 4 nm. Comparing the vibration modes calculated by elasticity theory and atomistic simulation based on the Embedded Atom Method, we first show that the anisotropy of the stiffness tensor in elastic calculation is essential to ensure a good agreement between elastic and atomistic models. Second, we illustrate the reduction of the number of vibration modes due to the diminution of the number of atoms when reducing the nanoparticles size. Finally, we exhibit a breakdown of the frequency-spectra scaling of the vibration modes and attribute it to surface effects. Some critical sizes under which such effects are expected, depending on the material and the considered vibration modes are given.Comment: Accepted to Phys. Rev.

    Vibrations of weakly-coupled nanoparticles

    Full text link
    The vibrations of a coupled pair of isotropic silver spheres are investigated and compared with the vibrations of the single isolated spheres. Situations of both strong coupling and also weak coupling are investigated using continuum elasticity and perturbation theory. The numerical calculation of the eigenmodes of such dimers is augmented with a symmetry analysis. This checks the convergence and applicability of the numerical method and shows how the eigenmodes of the dimer are constructed from those of the isolated spheres. The frequencies of the lowest frequency vibrations of such dimers are shown to be very sensitive to the strength of the coupling between the spheres. Some of these modes can be detected by inelastic light scattering and time-resolved optical measurements which provides a convenient way to study the nature of the mechanical coupling in dimers of micro and nanoparticles.Comment: expanded version, 8 pages, 5 figures, 2 table

    Acoustic vibrations of anisotropic nanoparticles

    Full text link
    Acoustic vibrations of nanoparticles made of materials with anisotropic elasticity and nanoparticles with non-spherical shapes are theoretically investigated using a homogeneous continuum model. Cubic, hexagonal and tetragonal symmetries of the elasticity are discussed, as are spheroidal, cuboctahedral and truncated cuboctahedral shapes. Tools are described to classify the different vibrations and for example help identify the modes having a significant low-frequency Raman scattering cross-section. Continuous evolutions of the modes starting from those of an isotropic sphere coupled with the determination of the irreducible representation of the branches permit some qualitative statements to be made about the nature of various modes. For spherical nanoparticles, a more accurate picture is obtained through projections onto the vibrations of an isotropic sphere.Comment: 11 pages, 9 tables, 6 figure

    Poisson ratio and excess low-frequency vibrational states in glasses

    Full text link
    In glass, starting from a dependence of the Angell's fragility on the Poisson ratio [V. N. Novikov and A. P. Sokolov, Nature 431, 961 (2004)], and a dependence of the Poisson ratio on the atomic packing density [G. N. Greaves et al., Nat. Mater. 10, 823 (2011)], we propose that the heterogeneities are predominantly density fluctuations in strong glasses (lower Poisson ratio) and shear elasticity fluctuations in fragile glasses (higher Poisson ratio). Because the excess of low-frequency vibration modes in comparison with the Debye regime (boson peak) is strongly connected to these fluctuations, we propose that they are breathing-like (with change of volume) in strong glasses and shear-like (without change of volume) in fragile glasses. As a verification, it is confirmed that the excess modes in the strong silica glass are predominantly breathing-like. Moreover, it is shown that the excess breathing-like modes in a strong polymeric glass are replaced by shear-like modes under hydrostatic pressure as the glass becomes more compact

    Vibrations of free and embedded anisotropic elastic spheres: Application to low-frequency Raman scattering of silicon nanoparticles in silica

    Full text link
    Vibrational mode frequencies and damping are calculated for an elastic sphere embedded in an infinite, homogeneous, isotropic elastic medium. Anisotropic elasticity of the sphere significantly shifts the frequencies in comparison to simplified calculations that assume isotropy. New low frequency Raman light scattering data are presented for silicon spheres grown in a SiO2 glass matrix. Principal features of the Raman spectrum are not correctly described by a simple model of the nanoparticle as a free, isotropic sphere, but require both matrix effects and the anisotropy of the silicon to be taken into account. Libration, not vibration, is the dominant mechanism

    Comment on "Estimate of the vibrational frequencies of spherical virus particles"

    Full text link
    This comment corrects some errors which appeared in the calculation of an elastic sphere eigenenergies. As a result, the symmetry of the mode having the lowest frequency is changed. Also a direction for calculating the damping of these modes for embedded elastic spheres is given.Comment: comment L. H. Ford Phys. Rev. E 67 (2003) 05192

    Far infrared absorption by acoustic phonons in titanium dioxide nanopowders

    Full text link
    We report spectral features of far infrared electromagnetic radiation absorption in anatase TiO2 nanopowders which we attribute to absorption by acoustic phonon modes of nanoparticles. The frequency of peak excess absorption above the background level corresponds to the predicted frequency of the dipolar acoustic phonon from continuum elastic theory. The intensity of the absorption cannot be accounted for in a continuum elastic dielectric description of the nanoparticle material. Quantum mechanical scale dependent effects must be considered. The absorption cross section is estimated from a simple mechanical phenomenological model. The results are in plausible agreement with the absorption being due to a sparse layer of charge on the nanoparticle surface.Comment: 8 pages, 5 figures, submitted to Journal of Nanoelectronics and Optoelectronic
    • …
    corecore