3 research outputs found

    Stuttered swallowing: Electric stimulation of the right insula interferes with water swallowing. A case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various functional resonance imaging, magnetoencephalographic and lesion studies suggest the involvement of the insular cortex in the control of swallowing. However, the exact location of insular activation during swallowing and its functional significance remain unclear.</p> <p>Case presentation</p> <p>Invasive electroencephalographic monitoring was performed in a 24-year-old man with medically intractable stereotyped nocturnal hypermotor seizures due to a ganglioglioma. During stimulation of the right inferior posterior insular cortex with depth electrodes the patient spontaneously reported a perception of a "stutter in swallowing". Stimulation of the inferior posterior insular cortex at highest intensity (4 mA) was also associated with irregular and delayed swallows. Swallowing was not impaired during stimulation of the superior posterior insular cortex, regardless of stimulation intensity.</p> <p>Conclusions</p> <p>These results indicate that the right inferior posterior insular cortex is involved in the neural circuitry underlying the control of swallowing.</p

    EGFR Trafficking in Physiology and Cancer

    No full text
    Signaling from the epidermal growth factor receptor (EGFR) elicits multiple biological responses, including cell proliferation, migration, and survival. Receptor endocytosis and trafficking are critical physiological processes that control the strength, duration, diversification, and spatial restriction of EGFR signaling through multiple mechanisms, which we review in this chapter. These mechanisms include: (i) regulation of receptor density and activation at the cell surface; (ii) concentration of receptors into distinct nascent endocytic structures; (iii) commitment of the receptor to different endocytic routes; (iv) endosomal sorting and postendocytic trafficking of the receptor through distinct pathways, and (v) recycling to restricted regions of the cell surface. We also highlight how communication between organelles controls EGFR activity along the endocytic route. Finally, we illustrate how abnormal trafficking of EGFR oncogenic mutants, as well as alterations of the endocytic machinery, contributes to aberrant EGFR signaling in cancer
    corecore