47 research outputs found

    Quick identification of acute chest pain patients study (QICS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with acute chest pain are often referred to the emergency ward and extensively investigated. Investigations are costly and could induce unnecessary complications, especially with invasive diagnostics. Nevertheless, chest pain patients have high mortalities. Fast identification of high-risk patients is crucial. Therefore several strategies have been developed including specific symptoms, signs, laboratory measurements, and imaging.</p> <p>Methods/Design</p> <p>The Quick Identification of acute Chest pain Study (QICS) will investigate whether a combined use of specific symptoms and signs, electrocardiography, routine and new laboratory measures, adjunctive imaging including electron beam (EBT) computed tomography (CT) and contrast multislice CT (MSCT) will have a high diagnostic yield for patients with acute chest pain. All patients will be investigated according a standardized protocol in the Emergency Department. Serum and plasma will be frozen for future analysis for a wide range of biomarkers at a later time point. The primary endpoint is the safe recognition of low-risk chest pain patients directly at presentation. Secondary endpoint is the identification of a wide range of sensitive predictive clinical markers, chemical biomarkers and radiological markers in acute chest pain patients. Chemical biomarkers will be compared to quantitative CT measurements of coronary atherosclerosis as a surrogate endpoint. Chemical biomarkers will also be compared in head to head comparison and for their additional value.</p> <p>Discussion</p> <p>This will be a very extensive investigation of a wide range of risk predictors in acute chest pain patients. New reliable fast and cheap diagnostic algorithm resulting from the test results might improve chest pain patients' prognosis, and reduce unnecessary costs and diagnostic complications.</p

    Erythropoietin: a multimodal neuroprotective agent

    Get PDF
    The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent

    Nevoid basal cell carcinoma syndrome (Gorlin syndrome)

    Get PDF
    Nevoid basal cell carcinoma syndrome (NBCCS), also known as Gorlin syndrome, is a hereditary condition characterized by a wide range of developmental abnormalities and a predisposition to neoplasms

    The role of selenium, vitamin C, and zinc in benign thyroid diseases and of selenium in malignant thyroid diseases: Low selenium levels are found in subacute and silent thyroiditis and in papillary and follicular carcinoma

    Get PDF

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore