6,053 research outputs found
Statistics of resonance width shifts as a signature of eigenfunction non-orthogonality
We consider an open (scattering) quantum system under the action of a
perturbation of its closed counterpart. It is demonstrated that the resulting
shift of resonance widths is a sensitive indicator of the non-orthogonality of
resonance wavefunctions, being zero only if those were orthogonal. Focusing
further on chaotic systems, we employ random matrix theory to introduce a new
type of parametric statistics in open systems, and derive the distribution of
the resonance width shifts in the regime of weak coupling to the continuum.Comment: 4 pages, 1 figure (published version with minor changes
Inhomogeneous losses and complexness of wave functions in chaotic cavities
In a two-dimensional microwave chaotic cavity Ohmic losses located at the contour of the cavity result in different broadenings of different modes. We provide an analytic description and establish the link between such an inhomogeneous damping and the complex (non-real) character of biorthogonal wave functions. This substantiates the corresponding recent experimental findings of Barthélemy et al. (Europhys. Lett., 70 (2005) 162)
Supersonic Discrete Kink-Solitons and Sinusoidal Patterns with "Magic" wavenumber in Anharmonic Lattices
The sharp pulse method is applied to Fermi-Pasta-Ulam (FPU) and Lennard-Jones
(LJ) anharmonic lattices. Numerical simulations reveal the presence of high
energy strongly localized ``discrete'' kink-solitons (DK), which move with
supersonic velocities that are proportional to kink amplitudes. For small
amplitudes, the DK's of the FPU lattice reduce to the well-known ``continuous''
kink-soliton solutions of the modified Korteweg-de Vries equation. For high
amplitudes, we obtain a consistent description of these DK's in terms of
approximate solutions of the lattice equations that are obtained by restricting
to a bounded support in space exact solutions with sinusoidal pattern
characterized by the ``magic'' wavenumber . Relative displacement
patterns, velocity versus amplitude, dispersion relation and exponential tails
found in numerical simulations are shown to agree very well with analytical
predictions, for both FPU and LJ lattices.Comment: Europhysics Letters (in print
Preventing light-induced degradation in multicrystalline silicon
Multicrystalline silicon (mc-Si) is currently dominating the silicon solar cell market due to low ingot costs, but its efficiency is limited by transition metals, extended defects, and light-induced degradation (LID). LID is traditionally associated with a boron-oxygen complex, but the origin of the degradation in the top of the commercial mc-Si brick is revealed to be interstitial copper. We demonstrate that both a large negative corona charge and an aluminum oxide thin film with a built-in negative charge decrease the interstitial copper concentration in the bulk, preventing LID in mc-Si.Peer reviewe
Discrete kink dynamics in hydrogen-bonded chains I: The one-component model
We study topological solitary waves (kinks and antikinks) in a nonlinear
one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse
type. This chain is used to describe the collective proton dynamics in
quasi-one-dimensional networks of hydrogen bonds, where the on-site potential
plays role of the proton potential in the hydrogen bond. The system supports a
rich variety of stationary kink solutions with different symmetry properties.
We study the stability and bifurcation structure of all these stationary kink
states. An exactly solvable model with a piecewise ``parabola-constant''
approximation of the double-Morse potential is suggested and studied
analytically. The dependence of the Peierls-Nabarro potential on the system
parameters is studied. Discrete travelling-wave solutions of a narrow permanent
profile are shown to exist, depending on the anharmonicity of the Morse
potential and the cooperativity of the hydrogen bond (the coupling constant of
the interaction between nearest-neighbor protons).Comment: 12 pages, 20 figure
Electron-ion recombination of Si IV forming Si III: Storage-ring measurement and multiconfiguration Dirac-Fock calculations
The electron-ion recombination rate coefficient for Si IV forming Si III was
measured at the heavy-ion storage-ring TSR. The experimental electron-ion
collision energy range of 0-186 eV encompassed the 2p(6) nl n'l' dielectronic
recombination (DR) resonances associated with 3s to nl core excitations, 2s
2p(6) 3s nl n'l' resonances associated with 2s to nl (n=3,4) core excitations,
and 2p(5) 3s nl n'l' resonances associated with 2p to nl (n=3,...,infinity)
core excitations. The experimental DR results are compared with theoretical
calculations using the multiconfiguration Dirac-Fock (MCDF) method for DR via
the 3s to 3p n'l' and 3s to 3d n'l' (both n'=3,...,6) and 2p(5) 3s 3l n'l'
(n'=3,4) capture channels. Finally, the experimental and theoretical plasma DR
rate coefficients for Si IV forming Si III are derived and compared with
previously available results.Comment: 13 pages, 9 figures, 3 tables. Accepted for publication in Physical
Review
Statistics of Impedance, Local Density of States, and Reflection in Quantum Chaotic Systems with Absorption
We are interested in finding the joint distribution function of the real and
imaginary parts of the local Green function for a system with chaotic internal
wave scattering and a uniform energy loss (absorption). For a microwave cavity
attached to a single-mode antenna the same quantity has a meaning of the
complex cavity impedance. Using the random matrix approach, we relate its
statistics to that of the reflection coefficient and scattering phase and
provide exact distributions for systems with beta=2 and beta=4 symmetry class.
In the case of beta=1 we provide an interpolation formula which incorporates
all known limiting cases and fits excellently available experimental data as
well as diverse numeric tests.Comment: 4 pages, 1 figur
Investigations on the interaction between the low energy heavy ion beams and hydrogen plasma
The investigations on the interaction between
ion beam and matter is one of the most important
topics in atomic physics and nuclear physics. It is
indeed a requirement for a deeper understanding
of the interaction processes. Especially the energy
deposition by an intense heavy ion beam with the
low energy impinging into a degenerate matter,
which is related to the topics of warm dense
matter, fast ignition process and helium ions selfheating
in the fusion process..
Peierls Instabilities in Quasi-One-Dimensional Quantum Double-Well Chains
Peierls-type instabilities in quarter-filled () and half-filled
() quantum double-well hydrogen-bonded chain are investigated
analytically in the framework of two-stage orientational-tunnelling model with
additional inclusion of the interactions of protons with two different optical
phonon branches. It is shown that when the energy of proton-phonon coupling
becomes large, the system undergoes a transition to a various types of
insulator states. The influence of two different transport amplitudes on ground
states properties is studied. The results are compared with the pressure effect
experimental investigations in superprotonic systems and hydrogen halides at
low temperatures.Comment: 7 pages, RevTeX, 9 eps figure
- …