2 research outputs found

    BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B 12 by Propionibacterium freudenreichii

    Get PDF
    Background Propionibacterium freudenreichii is a food grade bacterium that has gained attention as a producer of appreciable amounts of cobalamin, a cobamide with activity of vitamin B 12 . Production of active form of vitamin is a prerequisite for attempts to naturally fortify foods with B 12 by microbial fermentation. Active vitamin B 12 is distinguished from the pseudovitamin by the presence of 5,6-dimethylbenzimidazole (DMBI) as the lower ligand. Genomic data indicate that P. freudenreichii possesses a fusion gene, bluB/cobT2, coding for a predicted phosphoribosyltransferase/nitroreductase, which is presumably involved in production of vitamin B 12 . Understanding the mechanisms affecting the synthesis of different vitamin forms is useful for rational strain selection and essential for engineering of strains with improved B 12 production properties. Results Here, we investigated the activity of heterologously expressed and purified fusion enzyme BluB/CobT2. Our results show that BluB/CoBT2 is responsible for the biosynthesis of the DMBI base and its activation into α-ribazole phosphate, preparing it for attachment as the lower ligand of cobalamin. The fusion enzyme was found to be efficient in metabolite channeling and the enzymes’ inability to react with adenine, a lower ligand present in the pseudovitamin, revealed a mechanism favoring the production of the active form of the vitamin. P. freudenreichii did not produce cobalamin under strictly anaerobic conditions, confirming the requirement of oxygen for DMBI synthesis. In vivo experiments also revealed a clear preference for incorporating DMBI over adenine into cobamide under both microaerobic and anaerobic conditions. Conclusions The herein described BluB/CobT2 is responsible for the production and activation of DMBI. Fusing those two activities results in high pressure towards production of the true vitamin B 12 by efficiently activating DMBI formed within the same enzymatic complex. This indicates that BluB/CobT2 is the crucial enzyme in the B 12 biosynthetic pathway of P. freudenreichii. The GRAS organism status and the preference for synthesizing active vitamin form make P. freudenreichii a unique candidate for the in situ production of vitamin B 12 within food products. Keywords: Propionibacterium freudenreichii ; Cobalamin; B12; DMBI; α-Ribazole; Phosphoribozyltransferase; Nitroreductase; Fusion enzyme; BluB; CobTPeer reviewe

    The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone

    Get PDF
    Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus. Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise spontaneously in an S. aureus mutant lacking the ClpX chaperone. A wide variety of ltaS mutations were selected, and among these, a substantial portion resulted in premature stop codons and other changes predicted to abolish LtaS synthesis. Consistent with this assumption, the clpX ltaS double mutants did not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement defects of an LTA-depleted strain, while other phenotypes typical of LTA-negative S. aureus mutants, including increased cell size and decreased autolytic activity, are retained. In conclusion, our results indicate that LTA has an essential role in septum placement that can be bypassed by inactivating the ClpX chaperone. IMPORTANCE Lipoteichoic acid is an essential component of the Staphylococcus aureus cell envelope and an attractive target for the development of vaccines and antimicrobials directed against antibiotic-resistant Gram-positive bacteria such as methicillin-resistant S. aureus and vancomycin-resistant enterococci. In this study, we showed that the lipoteichoic acid polymer is essential for growth of S. aureus only as long as the ClpX chaperone is present in the cell. Our results indicate that lipoteichoic acid and ClpX play opposite roles in a pathway that controls two key cell division processes in S. aureus, namely, septum formation and autolytic activity. The discovery of a novel functional connection in the genetic network that controls cell division in S. aureus may expand the repertoire of possible strategies to identify compounds or compound combinations that kill antibiotic-resistant S. aureus.Peer reviewe
    corecore