41 research outputs found

    An Energy-based Approach to Ensure the Stability of Learned Dynamical Systems

    Full text link
    Non-linear dynamical systems represent a compact, flexible, and robust tool for reactive motion generation. The effectiveness of dynamical systems relies on their ability to accurately represent stable motions. Several approaches have been proposed to learn stable and accurate motions from demonstration. Some approaches work by separating accuracy and stability into two learning problems, which increases the number of open parameters and the overall training time. Alternative solutions exploit single-step learning but restrict the applicability to one regression technique. This paper presents a single-step approach to learn stable and accurate motions that work with any regression technique. The approach makes energy considerations on the learned dynamics to stabilize the system at run-time while introducing small deviations from the demonstrated motion. Since the initial value of the energy injected into the system affects the reproduction accuracy, it is estimated from training data using an efficient procedure. Experiments on a real robot and a comparison on a public benchmark shows the effectiveness of the proposed approach.Comment: Accepted at the International Conference on Robotics and Automation 202

    Merging Position and Orientation Motion Primitives

    Get PDF
    In this paper, we focus on generating complex robotic trajectories by merging sequential motion primitives. A robotic trajectory is a time series of positions and orientations ending at a desired target. Hence, we first discuss the generation of converging pose trajectories via dynamical systems, providing a rigorous stability analysis. Then, we present approaches to merge motion primitives which represent both the position and the orientation part of the motion. Developed approaches preserve the shape of each learned movement and allow for continuous transitions among succeeding motion primitives. Presented methodologies are theoretically described and experimentally evaluated, showing that it is possible to generate a smooth pose trajectory out of multiple motion primitives

    Learning Deep Robotic Skills on Riemannian manifolds

    Full text link
    In this paper, we propose RiemannianFlow, a deep generative model that allows robots to learn complex and stable skills evolving on Riemannian manifolds. Examples of Riemannian data in robotics include stiffness (symmetric and positive definite matrix (SPD)) and orientation (unit quaternion (UQ)) trajectories. For Riemannian data, unlike Euclidean ones, different dimensions are interconnected by geometric constraints which have to be properly considered during the learning process. Using distance preserving mappings, our approach transfers the data between their original manifold and the tangent space, realizing the removing and re-fulfilling of the geometric constraints. This allows to extend existing frameworks to learn stable skills from Riemannian data while guaranteeing the stability of the learning results. The ability of RiemannianFlow to learn various data patterns and the stability of the learned models are experimentally shown on a dataset of manifold motions. Further, we analyze from different perspectives the robustness of the model with different hyperparameter combinations. It turns out that the model's stability is not affected by different hyperparameters, a proper combination of the hyperparameters leads to a significant improvement (up to 27.6%) of the model accuracy. Last, we show the effectiveness of RiemannianFlow in a real peg-in-hole (PiH) task where we need to generate stable and consistent position and orientation trajectories for the robot starting from different initial poses

    Learning Stable Robotic Skills on Riemannian Manifolds

    Full text link
    In this paper, we propose an approach to learn stable dynamical systems evolving on Riemannian manifolds. The approach leverages a data-efficient procedure to learn a diffeomorphic transformation that maps simple stable dynamical systems onto complex robotic skills. By exploiting mathematical tools from differential geometry, the method ensures that the learned skills fulfill the geometric constraints imposed by the underlying manifolds, such as unit quaternion (UQ) for orientation and symmetric positive definite (SPD) matrices for impedance, while preserving the convergence to a given target. The proposed approach is firstly tested in simulation on a public benchmark, obtained by projecting Cartesian data into UQ and SPD manifolds, and compared with existing approaches. Apart from evaluating the approach on a public benchmark, several experiments were performed on a real robot performing bottle stacking in different conditions and a drilling task in cooperation with a human operator. The evaluation shows promising results in terms of learning accuracy and task adaptation capabilities.Comment: 16 pages, 10 figures, journa

    Receding-Constraint Model Predictive Control using a Learned Approximate Control-Invariant Set

    Full text link
    In recent years, advanced model-based and data-driven control methods are unlocking the potential of complex robotics systems, and we can expect this trend to continue at an exponential rate in the near future. However, ensuring safety with these advanced control methods remains a challenge. A well-known tool to make controllers (either Model Predictive Controllers or Reinforcement Learning policies) safe, is the so-called control-invariant set (a.k.a. safe set). Unfortunately, for nonlinear systems, such a set cannot be exactly computed in general. Numerical algorithms exist for computing approximate control-invariant sets, but classic theoretic control methods break down if the set is not exact. This paper presents our recent efforts to address this issue. We present a novel Model Predictive Control scheme that can guarantee recursive feasibility and/or safety under weaker assumptions than classic methods. In particular, recursive feasibility is guaranteed by making the safe-set constraint move backward over the horizon, and assuming that such set satisfies a condition that is weaker than control invariance. Safety is instead guaranteed under an even weaker assumption on the safe set, triggering a safe task-abortion strategy whenever a risk of constraint violation is detected. We evaluated our approach on a simulated robot manipulator, empirically demonstrating that it leads to less constraint violations than state-of-the-art approaches, while retaining reasonable performance in terms of tracking cost and number of completed tasks.Comment: 7 pages, 3 figures, 3 tables, 2 pseudo-algo, conferenc

    Action Noise in Off-Policy Deep Reinforcement Learning: Impact on Exploration and Performance

    Full text link
    Many Deep Reinforcement Learning (D-RL) algorithms rely on simple forms of exploration such as the additive action noise often used in continuous control domains. Typically, the scaling factor of this action noise is chosen as a hyper-parameter and is kept constant during training. In this paper, we focus on action noise in off-policy deep reinforcement learning for continuous control. We analyze how the learned policy is impacted by the noise type, noise scale, and impact scaling factor reduction schedule. We consider the two most prominent types of action noise, Gaussian and Ornstein-Uhlenbeck noise, and perform a vast experimental campaign by systematically varying the noise type and scale parameter, and by measuring variables of interest like the expected return of the policy and the state-space coverage during exploration. For the latter, we propose a novel state-space coverage measure XUrel\operatorname{X}_{\mathcal{U}\text{rel}} that is more robust to estimation artifacts caused by points close to the state-space boundary than previously-proposed measures. Larger noise scales generally increase state-space coverage. However, we found that increasing the space coverage using a larger noise scale is often not beneficial. On the contrary, reducing the noise scale over the training process reduces the variance and generally improves the learning performance. We conclude that the best noise type and scale are environment dependent, and based on our observations derive heuristic rules for guiding the choice of the action noise as a starting point for further optimization.Comment: Published in Transactions on Machine Learning Research (11/2022) https://openreview.net/forum?id=NljBlZ6hm

    A Passive Variable Impedance Control Strategy with Viscoelastic Parameters Estimation of Soft Tissues for Safe Ultrasonography

    Full text link
    In the context of telehealth, robotic approaches have proven a valuable solution to in-person visits in remote areas, with decreased costs for patients and infection risks. In particular, in ultrasonography, robots have the potential to reproduce the skills required to acquire high-quality images while reducing the sonographer's physical efforts. In this paper, we address the control of the interaction of the probe with the patient's body, a critical aspect of ensuring safe and effective ultrasonography. We introduce a novel approach based on variable impedance control, allowing real-time optimisation of a compliant controller parameters during ultrasound procedures. This optimisation is formulated as a quadratic programming problem and incorporates physical constraints derived from viscoelastic parameter estimations. Safety and passivity constraints, including an energy tank, are also integrated to minimise potential risks during human-robot interaction. The proposed method's efficacy is demonstrated through experiments on a patient dummy torso, highlighting its potential for achieving safe behaviour and accurate force control during ultrasound procedures, even in cases of contact loss.Comment: 7 pages, 7 figures, submitted to ICRA 202
    corecore