23 research outputs found

    High-pressure effects on structural, magnetic, and vibrational properties of van der Waals antiferromagnet MnPS₃

    Get PDF
    The crystal structure, vibrational spectra, and magnetic structure of quasi-two-dimensional layered van der Waals material MnPS3 were studied using x-ray diffraction and Raman spectroscopy at high pressures up to 28 GPa, and neutron diffraction up to 3.6 GPa, respectively. A structural phase transition between two monoclinic modifications of the same C2/m symmetry was observed, evolving gradually in the pressure range of about 1–6 GPa. The transition is accompanied by abrupt shortening of lattice parameters, significant reduction of the monoclinic distortion, and anomalies in the pressure behavior of several Raman-mode frequencies. No more structural phase transitions were revealed in the studied pressure range. The antiferromagnetic (AFM) state with a propagation vector k= (0, 0, 0) remains stable in ambient pressure and high-pressure structural phases of MnPS3 at least up to 3.6 GPa. The Néel temperature increases noticeably with a pressure coefficient of dTN/dP=6.7 K/GPa, leading to modification of the dominant first-neighbor magnetic interaction exchange parameter with a relevant coefficient dJ1/dP≈−0.6 meV/GPa. This observation is in contrast to the pressure behavior of FePS3, demonstrating modification of the AFM state from 2D-like to 3D-like at the similar pressure-induced structural phase transition. The different pressure response of the magnetic states of MnPS3 and FePS3 is analyzed in terms of competing in-plane and interplane magnetic interactions

    Spin-induced negative thermal expansion and spin–phonon coupling in van der Waals material CrBr<inf>3</inf>

    No full text
    The two-dimensional van der Waals (vdW) magnets retaining magnetic order in atomically thin limit demonstrate challenging physical phenomena and they are considered as prospective building blocks for construction of advanced spintronics and nanoelectronics devices. Here, we present experimental evidence for negative thermal expansion of lattice volume and vdW layers and strong spin–phonon coupling effects, caused by formation of the long-range ferromagnetic order in the vdW material CrBr3. The neutron and X-ray diffraction measurements revealed anomalous temperature variation of lattice parameters and interatomic distances and angles in the vicinity of Curie temperature (TC). A pronounced rise of the frequencies of the most of the observed vibrational modes and unusual reversal broadening of their full widths at half maximum below TC was found from Raman spectroscopy measurements

    Pressure-induced structural phase transitions in bismuth tungstate Bi<inf>2</inf>WO<inf>6</inf>

    No full text
    The pressure-induced structural phase transitions in bismuth tungstate Bi2WO6 have been studied using neutron diffraction and Raman spectroscopy at high pressures up to 7 and 30GPa, respectively. A rich structural polymorphism was revealed. At P ≃ 3.5GPa a phase transition from the initial orthorhombic phase of P21 ab symmetry to an orthorhombic phase of B2cb symmetry was observed. This transition is caused by the complex spatial rotation of the WO6 octahedra. A subsequent isostructural phase transition to another orthorhombic phase of B2cb symmetry was detected at P ≃ 5.9GPa, accompanied by changes in both the mutual rotation and tilting of the oxygen octahedra with respect to the crystal b axis. Two more pressure-induced phase transitions in Bi2WO6 at high pressures of 11.5 and 20GPa were observed in the Raman spectra. These pressure-driven phase transitions in bismuth tungstate are accompanied by anomalies in the pressure dependences of the unit-cell parameters, bond lengths and angles, and in the vibrational modes

    Pressure-induced structural phase transition in NdAl x Ga 2-x

    No full text

    Pressure effect on magnetic susceptibility of LaCoO₃

    No full text
    The effect of pressure on magnetic properties of LaCoO₃ is studied experimentally and theoretically. The pressure dependence of magnetic susceptibility χ of LaCoO₃ is obtained by precise measurements of χ as a function of the hydrostatic pressure P up to 2 kbar in the temperature range from 78 K to 300 K. A pronounced magnitude of the pressure effect is found to be negative in sign and strongly temperature dependent. The obtained experimental data are analysed by using a two-level model and DFT+U calculations of the electronic structure of LaCoO₃ . In particular, the fixed spin moment method was employed to obtain a volume dependence of the total energy difference Δ between the low spin and the intermediate spin states of LaCoO₃ . Analysis of the obtained experimental χ(P) dependence within the two-level model, as well as our DFT+U calculations, have revealed the anomalous large decrease in the energy difference Δ with increasing of the unit cell volume. This effect, taking into account a thermal expansion, can be responsible for the temperatures dependence of Δ, predicting its vanishing near room temperature

    Pressure-induced structural transformations, orbital order and antiferromagnetism in La

    No full text
    High pressure evolution of structural, vibrational and magnetic properties of La0.75Ca0.25MnO3 was studied by means of X-ray diffraction and Raman spectroscopy up to 39 GPa, and neutron diffraction up to 7.5 GPa. The stability of different magnetic ground states, orbital configurations and structural modifications were investigated by LDA  +  U electronic structure calculations. A change of octahedral tilts corresponding to the transformation of orthorhombic crystal structure from the Pnma symmetry to the Imma one occurs above P ~ 6 GPa. At the same time, the evolution of the orthorhombic lattice distortion evidences an appearance of the egdx² − z² orbital polarization at high pressures. The magnetic order in La0.75Ca0.25MnO3 undergoes a continuous transition from the ferromagnetic 3D metallic (FM) ground state to the A-type antiferromagnetic (AFM) state of assumedly 2D pseudo-metallic character under pressure, that starts at about 1 GPa and extends possibly to 20–30 GPa
    corecore