200 research outputs found

    Scalable Production of Highly-Sensitive Nanosensors Based on Graphene Functionalized with a Designed G Protein-Coupled Receptor

    Get PDF
    We have developed a novel, all-electronic biosensor for opioids that consists of an engineered mu opioid receptor protein, with high binding affinity for opioids, chemically bonded to a graphene field-effect transistor to read out ligand binding. A variant of the receptor protein that provided chemical recognition was computationally redesigned to enhance its solubility and stability in an aqueous environment. A shadow mask process was developed to fabricate arrays of hundreds of graphene transistors with average mobility of ~1500 cm2 V-1 s-1 and yield exceeding 98%. The biosensor exhibits high sensitivity and selectivity for the target naltrexone, an opioid receptor antagonist, with a detection limit of 10 pg/mL.Comment: Nano Letters 201

    Cladribine with cyclophosphamide and prednisone in the management of low-grade lymphoproliferative malignancies

    Get PDF
    The feasibility of combining cladribine with cyclophosphamide and prednisone in the management of indolent lymphoid malignancies was determined. Nineteen patients [nine chronic lymphocytic leukaemia (CLL), seven non-Hodgkin's lymphoma (NHL) and three macroglobulinaemia (M))] received cladribine 0.1 mg kg−1 per day as a subcutaneous bolus injection on days 1–3 (up to 5 injections) with intravenous cyclophosphamide 500 mg m−2 on day 1 and oral prednisone 40 mg m−2 on days 1–5 at 4-weekly intervals up to a maximum of six courses. A total of 80 courses were given. Overall response rate was 88%, with four patients achieving a complete clinical and haematological response and 12 achieving a partial response. Neutropenia WHO grade 4 in two patients and WHO grade 3 infection in one patient were the limiting toxicities on treatment. During the follow-up, WHO grade ≥3 haematological complications occurred in five patients and WHO grade ≥3 non-haematological complications in five patients. There were no treatment-related deaths. This study demonstrates the feasibility of the cladribine/cyclophosphamide/prednisone (CCP) combination that appears highly active and safe in the management of indolent lymphoid malignancies. © 1999 Cancer Research Campaig

    Knowledge-Based Potential for Positioning Membrane-Associated Structures and Assessing Residue-Specific Energetic Contributions

    Get PDF
    The complex hydrophobic and hydrophilic milieus of membrane-associated proteins pose experimental and theoretical challenges to their understanding. Here we produce a non-redundant database to compute knowledge-based asymmetric cross-membrane potentials from the per-residue distributions of Cβ, Cγ and functional group atoms. We predict transmembrane and peripherally associated regions from genomic sequence and position peptides and protein structures relative to the bilayer (available at http://www.degradolab.org/ez). The pseudo-energy topological landscapes underscore positional stability and functional mechanisms demonstrated here for antimicrobial peptides, transmembrane proteins, and viral fusion proteins. Moreover, experimental effects of point mutations on the relative ratio changes of dual-topology proteins are quantitatively reproduced. The functional group potential and the membrane-exposed residues display the largest energetic changes enabling to detect native-like structures from decoys. Hence, focusing on the uniqueness of membrane-associated proteins and peptides, we quantitatively parameterize their cross-membrane propensity thus facilitating structural refinement, characterization, prediction and design

    Scaling of folding properties in simple models of proteins

    Full text link
    Scaling of folding properties of proteins is studied in a toy system -- the lattice Go model with various two- and three- dimensional geometries of the maximally compact native states. Characteristic folding times grow as power laws with the system size. The corresponding exponents are not universal. Scaling of the thermodynamic stability also indicates size-related deterioration of the folding properties.Comment: REVTeX, 4 pages, 4 EPS figures, PRL (in press

    Characterization of a Computationally Designed Water-Soluble Human μ Opioid Receptor Variant Using X-ray Structural Information

    Get PDF
    Background The recent X-ray crystal structure of the murine μ opioid receptor (MUR) allowed us to reengineer a previously designed water-soluble variant of the transmembrane portion of the human MUR (wsMUR-TM). Methods The new variant of water soluble MUR (wsMUR-TM_v2) was engineered based upon the murine MUR crystal structure. This novel variant was expressed in E. coliand purified. The properties of the receptor were characterized and compared with those of wsMUR-TM. Results Seven residues originally included for mutation in the design of the wsMUR-TM, were reverted to their native identities. wsMUR-TM_v2 contains 16% mutations of the total sequence. It was overexpressed and purified with high yield. Although dimers and higher oligomers were observed to form over time, the wsMUR-TM_v2 stayed predominantly monomeric at concentrations as high as 7.5 mg/ml in buffer within a 2-month period. Its secondary structure was predominantly helical and comparable with those of both the original wsMUR-TM variant and the native MUR. The binding affinity of wsMUR-TM_v2 for naltrexone (Kd ~ 70 nM) was in close agreement with that for wsMUR-TM. The helical content of wsMUR-TM_v2 decreased cooperatively with increasing temperature, and the introduction of sucrose was able to stabilize the protein. Conclusions A novel functional wsMUR-TM_v2 with only 16% mutations was successfully engineered, expressed in E. coli and purified based on information from the crystal structure of murine MUR. This not only provides a novel alternative tool for MUR studies in solution conditions, but also offers valuable information for protein engineering and structure function relationships

    Novel erythropoiesis stimulating protein (NESP) for the treatment of anaemia of chronic disease associated with cancer

    Get PDF
    Anaemia is a common haematologic disorder in patients with cancer and has a multifactorial aetiology, including the effects of the malignancy itself and residual effects from previous therapy. Novel erythropoiesis stimulating protein (NESP, darbepoetin alfa), a protein with additional sialic acid compared with erythropoietin (EPO), stimulates erythropoiesis by the same mechanism as recombinant human erythropoietin (rHuEPO) but it is biochemically distinct. NESP, with its approximately 3-fold greater serum half-life, can maintain haemoglobin levels as effectively as rHuEPO in anaemic patients with chronic renal failure and do so with less frequent dosing. We investigated the ability of NESP to safely increase haemoglobin levels of anaemic patients with non-myeloid malignancies not receiving chemotherapy. NESP was administered under the supervision of a physician at doses of 0.5, 1.0, 2.25 or 4.5 mcg kg−1wk−1for a maximum of 12 weeks. This report includes 89 patients completing the study by November 2000. NESP was well tolerated, with no reported dose-limiting toxicities or treatment-related severe adverse events. Increasing doses of NESP corresponded with increased efficacy. The percentage (95% confidence interval) of patients responding ranged from 61% (42%, 77%) in the 1.0 mcg kg−1wk−1group to 83% (65%, 94%) in the 4.5 mcg kg−1wk−1group. © 2001 Cance Cancer Research Campaig

    A Search for Energy Minimized Sequences of Proteins

    Get PDF
    In this paper, we present numerical evidence that supports the notion of minimization in the sequence space of proteins for a target conformation. We use the conformations of the real proteins in the Protein Data Bank (PDB) and present computationally efficient methods to identify the sequences with minimum energy. We use edge-weighted connectivity graph for ranking the residue sites with reduced amino acid alphabet and then use continuous optimization to obtain the energy-minimizing sequences. Our methods enable the computation of a lower bound as well as a tight upper bound for the energy of a given conformation. We validate our results by using three different inter-residue energy matrices for five proteins from protein data bank (PDB), and by comparing our energy-minimizing sequences with 80 million diverse sequences that are generated based on different considerations in each case. When we submitted some of our chosen energy-minimizing sequences to Basic Local Alignment Search Tool (BLAST), we obtained some sequences from non-redundant protein sequence database that are similar to ours with an E-value of the order of 10-7. In summary, we conclude that proteins show a trend towards minimizing energy in the sequence space but do not seem to adopt the global energy-minimizing sequence. The reason for this could be either that the existing energy matrices are not able to accurately represent the inter-residue interactions in the context of the protein environment or that Nature does not push the optimization in the sequence space, once it is able to perform the function
    corecore