4 research outputs found

    Plasmid-mediated AmpC

    Get PDF
    _Objectives:_ The objective of this study was to determine the prevalence of pAmpC beta-lactamases in community-acquired Gram negative bacteria in the Netherlands, and to identify possible risk factors for carriage of these strains. Methods: Fecal samples were obtained from community-dwelling volunteers. Participants also returned a questionnaire for analysis of risk factors. Screening for pAmpC was performed with selective enrichment broth and a selective screening agar. Confirmation of AmpC-production was performed with two double disc combination tests: cefotaxime and ceftazidime with either boronic acid or cloxacillin as inhibitor. Multiplex PCR was used as gold standard for detection of pAmpC. 16S rRNA PCR and AFLP were performed as required, plasmids were identified by PCR-based replicon typing. Questionnaire results were analyzed with SPSS, version 20.0. Results: Fecal samples were obtained from 550 volunteers; mean age 51 years (range: 18-91), 61% were females. pAmpC was present in seven E. coli isolates (7/550, 1.3%, 0.6-2.7 95% CI): six CMY-2-like pAmpC and one DHA. ESBL-encoding genes were found in 52/550 (9.5%, 7.3-12.2 95% CI) isolates; these were predominantly blaCTX-M genes. Two isolates had both ESBL and pAmpC. Admission to a hospital in the previous year was the only risk factor we identified. Conclusions: Our data indicate that the prevalence of pAmpC in the community seems still low. However, since pAmpC-producing isolates were not identified as ESBL producers by routine algorithms, there is consistent risk that further increase of their prevalence might go undetected

    Pseudomonas aeruginosa displays an epidemic population structure.

    Full text link
    peer reviewedBacteria can have population structures ranging from the fully sexual to the highly clonal. Despite numerous studies, the population structure of Pseudomonas aeruginosa is still somewhat contentious. We used a polyphasic approach in order to shed new light on this issue. A data set consisting of three outer membrane (lipo)protein gene sequences (oprI, oprL and oprD), a DNA-based fingerprint (amplified fragment length polymorphism), serotype and pyoverdine type of 73 P. aeruginosa clinical and environmental isolates, collected across the world, was analysed using biological data analysis software. We observed a clear mosaicism in the results, non-congruence between results of different typing methods and a microscale mosaic structure in the oprD gene. Hence, in this network, we also observed some clonal complexes characterized by an almost identical data set. The most recent clones exhibited serotypes O1, 6, 11 and 12. No obvious correlation was observed between these dominant clones and habitat or, with the exception of some recent clones, geographical origin. Our results are consistent with, and even clarify, some seemingly contradictory results in earlier epidemiological studies. Therefore, we suggest an epidemic population structure for P. aeruginosa, comparable with that of Neisseria meningitidis, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise

    Prevalence and abundance of selected genes conferring macrolide resistance genes in COPD patients during maintenance treatment with azithromycin

    Get PDF
    OBJECTIVES: Maintenance treatment with macrolide antibiotics has shown to be effective in reducing exacerbations in COPD patients. A major concern with prolonged treatment with antibiotics is the development of bacterial resistance. In this study we determined the effect of azithromycin on the development and acquisition of resistance to macrolides in the nasopharyngeal flora in COPD patients. METHODS: This study was part of the COLUMBUS trial, a randomised, double-blind, placebo-controlled trial to measure the effect of maintenance treatment with azithromycin in 92 COPD patients on the exacerbation rates during a 12-month period. In order to determine resistance to macrolides, we used a targeted metagenomic approach to measure the presence and relative abundance of specific macrolide resistance genes ermB, ermF and mefA in throat samples collected at different time-points during this 12-month period. RESULTS: There was no increased risk for acquisition of macrolide resistance genes in the azithromycin group compared to the placebo group in COPD patients. However, loss of the macrolide resistance gene ermB was increased overtime in the placebo treated group compared to the azithromycin group (n = 5 for the placebo group versus n = 0 for the azithromycin group at 12 months; p = 0.012). The change in relative abundance of the three macrolide-resistance genes showed that all but one (ermF) increased during treatment with azithromycin. CONCLUSIONS: The acquisition rate of macrolide resistance genes in COPD patients treated with azithromycin maintenance therapy was limited, but the relative abundance of macrolide resistance genes increased significantly over time compared to placebo. This study was part of the COLUMBUS trial ( Clinicaltrials.gov , NCT00985244 )

    The ReceptIVFity cohort study protocol to validate the urogenital microbiome as predictor for IVF or IVF/ICSI outcome 11 Medical and Health Sciences 1114 Paediatrics and Reproductive Medicine

    No full text
    Background: During the last decade, research has shown that besides the known predictive factors, such as duration of subfertility, a women's age, the body mass index, also the microbiome might affect fertility. Micro-organisms together with their genetic information and the milieu in which they interact are called the microbiome. Studies have shown that the presence of certain microbiota during assisted reproductive technology (ART) has a positive impact on the outcome. However, the potential role of using the microbiome as a predictor for outcome of ART has not yet been investigated. Methods: In a prospective study, 300 women of reproductive age and with an indication for in-vitro Fertilization (IVF) with or without Intra Cytoplasmic Sperm Injection (ICSI) treatment will be included. Prior to the IVF or IVF-ICSI treatment, these women provided a midstream urine sample and a vaginal swab. The composition of the urinary and vaginal microbiome will be analysed with both Next Generation Sequencing and the IS-pro technique. The endpoints of the study are pregnancy achieved after fresh embryo transfer (ET) and within the subsequent year after inclusion. External validation of the findings will take place in an additional cohort of 50 women with an IVF or IVF-ICSI indication. Discussion: In the proposed study, the predictive accuracy of the composition of the urinary and vaginal microbiome for IVF or IVF-ICSI outcome will be only validated for fresh ET. Follow-up has to show whether the predictive accuracy will be similar during the consecutive frozen ET's as part of the IVF or IVF-ICSI treatment or for subsequent stimulated or natural cycles. In addition, external validation will take place in another cohort and hospital. Predictive knowledge of the microbiome profile may enable couples to make a more substantiated decision on whether to continue treatment or not. Hence, the unnecessary physical and emotional burden of a failed IVF or IVF-ICSI treatment can be avoided. Trial registration: ISRCTN ISRCTN83157250. Registered 17 August 2018. Retrospectively registered
    corecore