122 research outputs found

    Is a single photon's wave front observable?

    Get PDF
    The ultimate goal and the theoretical limit of weak signal detection is the ability to detect a single photon against a noisy background. [...] In this paper we show, that a combination of a quantum metamaterial (QMM)-based sensor matrix and quantum non-demolition (QND) readout of its quantum state allows, in principle, to detect a single photon in several points, i.e., to observe its wave front. Actually, there are a few possible ways of doing this, with at least one within the reach of current experimental techniques for the microwave range. The ability to resolve the quantum-limited signal from a remote source against a much stronger local noise would bring significant advantages to such diverse fields of activity as, e.g., microwave astronomy and missile defence. The key components of the proposed method are 1) the entangling interaction of the incoming photon with the QMM sensor array, which produces the spatially correlated quantum state of the latter, and 2) the QND readout of the collective observable (e.g., total magnetic moment), which characterizes this quantum state. The effects of local noise (e.g., fluctuations affecting the elements of the matrix) will be suppressed relative to the signal from the spatially coherent field of (even) a single photon.Comment: 13 pages, 4 figure

    The nonlinear effects in 2DEG conductivity investigation by an acoustic method

    Full text link
    The parameters of two-dimensional electron gas (2DEG) in a GaAs/AlGaAs heterostructure were determined by an acoustical (contactless) method in the delocalized electrons region (B≤B\le2.5T). Nonlinear effects in Surface Acoustic Wave (SAW) absorption by 2DEG are determined by the electron heating in the electric field of SAW, which may be described in terms of electron temperature TeT_e. The energy relaxation time τϵ\tau_{\epsilon} is determined by the scattering at piezoelectric potential of acoustic phonons with strong screening. At different SAW frequencies the heating depends on the relationship between ωτϵ\omega\tau_{\epsilon} and 1 and is determined either by the instantaneously changing wave field (ωτϵ\omega\tau_{\epsilon}<1<1), or by the average wave power (ωτϵ\omega\tau_{\epsilon}>1>1).Comment: RevTeX, 5 pages, 3 PS-figures, submitted to Physica Status Sol.(Technical corrections in PS-figs

    Single File Diffusion enhancement in a fluctuating modulated 1D channel

    Full text link
    We show that the diffusion of a single file of particles moving in a fluctuating modulated 1D channel is enhanced with respect to the one in a bald pipe. This effect, induced by the fluctuations of the modulation, is favored by the incommensurability between the channel potential modulation and the moving file periodicity. This phenomenon could be of importance in order to optimize the critical current in superconductors, in particular in the case where mobile vortices move in 1D channels designed by adapted patterns of pinning sites.Comment: 4 pages, 4 figure

    Squeezing as the source of inefficiency in the quantum Otto cycle

    Get PDF
    The availability of controllable macroscopic devices, which maintain quantum coherence over relatively long time intervals, for the first time allows an experimental realization of many effects previously considered only as Gedankenexperiments, such as the operation of quantum heat engines. The theoretical efficiency \eta of quantum heat engines is restricted by the same Carnot boundary \eta_C as for the classical ones: any deviations from quasistatic evolution suppressing \eta below \eta_C. Here we investigate an implementation of an analog of the Otto cycle in a tunable quantum coherent circuit and show that the specific source of inefficiency is the quantum squeezing of the thermal state due to the finite speed of compression/expansion of the system.Comment: 17 pages, 5 figure

    Two-qubit parametric amplifier: large amplification of weak signals

    Full text link
    Using numerical simulations, we show that two coupled qubits can amplify a weak signal about hundredfold. This can be achieved if the two qubits are biased simultaneously by this weak signal and a strong pump signal, both of which having frequencies close to the inter-level transitions in the system. The weak signal strongly affects the spectrum generated by the strong pumping drive by producing and controlling mixed harmonics with amplitudes of the order of the main harmonic of the strong drive. We show that the amplification is robust with respect to noise, with an intensity of the order of the weak signal. When deviating from the optimal regime (corresponding to strong qubit coupling and a weak-signal frequency equal to the inter-level transition frequency) the proposed amplifier becomes less efficient, but it can still considerably enhance a weak signal (by several tens). We therefore propose to use coupled qubits as a combined parametric amplifier and frequency shifter.Comment: 6 figure

    Voltage-driven quantum oscillations in graphene

    Full text link
    We predict unusual (for non-relativistic quantum mechanics) electron states in graphene, which are localized within a finite-width potential barrier. The density of localized states in the sufficiently high and/or wide graphene barrier exhibits a number of singularities at certain values of the energy. Such singularities provide quantum oscillations of both the transport (e.g., conductivity) and thermodynamic properties of graphene - when increasing the barrier height and/or width, similarly to the well-known Shubnikov-de-Haas (SdH) oscillations of conductivity in pure metals. However, here the SdH-like oscillations are driven by an electric field instead of the usual magnetically-driven SdH-oscillations.Comment: 4 pages, 4 figure

    Estimates for parameters and characteristics of the confining SU(3)-gluonic field in an η′\eta^\prime-meson

    Full text link
    The confinement mechanism proposed earlier by the author is applied to estimate the possible parameters of the confining SU(3)-gluonic field in an η′\eta^\prime-meson. For this aim the electric form factor of an η′\eta^\prime-meson is nonperturbatively computed in an explicit analytic form. The estimates obtained are also consistent with the width of the electromagnetic decay η′→2γ\eta^\prime\to2\gamma. The corresponding estimates of the gluon concentrations, electric and magnetic colour field strengths are also adduced for the mentioned field at the scales of the meson under consideration.Comment: 20 pages, LaTe

    On-chip phonon-magnon reservoir for neuromorphic computing

    Get PDF
    Reservoir computing is a concept involving mapping signals onto a high-dimensional phase space of a dynamical system called “reservoir” for subsequent recognition by an artificial neural network. We implement this concept in a nanodevice consisting of a sandwich of a semiconductor phonon waveguide and a patterned ferromagnetic layer. A pulsed write-laser encodes input signals into propagating phonon wavepackets, interacting with ferromagnetic magnons. The second laser reads the output signal reflecting a phase-sensitive mix of phonon and magnon modes, whose content is highly sensitive to the write- and read-laser positions. The reservoir efficiently separates the visual shapes drawn by the write-laser beam on the nanodevice surface in an area with a size comparable to a single pixel of a modern digital camera. Our finding suggests the phonon-magnon interaction as a promising hardware basis for realizing on-chip reservoir computing in future neuromorphic architectures
    • …
    corecore