122 research outputs found
Is a single photon's wave front observable?
The ultimate goal and the theoretical limit of weak signal detection is the
ability to detect a single photon against a noisy background. [...] In this
paper we show, that a combination of a quantum metamaterial (QMM)-based sensor
matrix and quantum non-demolition (QND) readout of its quantum state allows, in
principle, to detect a single photon in several points, i.e., to observe its
wave front.
Actually, there are a few possible ways of doing this, with at least one
within the reach of current experimental techniques for the microwave range.
The ability to resolve the quantum-limited signal from a remote source against
a much stronger local noise would bring significant advantages to such diverse
fields of activity as, e.g., microwave astronomy and missile defence.
The key components of the proposed method are 1) the entangling interaction
of the incoming photon with the QMM sensor array, which produces the spatially
correlated quantum state of the latter, and 2) the QND readout of the
collective observable (e.g., total magnetic moment), which characterizes this
quantum state. The effects of local noise (e.g., fluctuations affecting the
elements of the matrix) will be suppressed relative to the signal from the
spatially coherent field of (even) a single photon.Comment: 13 pages, 4 figure
The nonlinear effects in 2DEG conductivity investigation by an acoustic method
The parameters of two-dimensional electron gas (2DEG) in a GaAs/AlGaAs
heterostructure were determined by an acoustical (contactless) method in the
delocalized electrons region (2.5T). Nonlinear effects in Surface
Acoustic Wave (SAW) absorption by 2DEG are determined by the electron heating
in the electric field of SAW, which may be described in terms of electron
temperature . The energy relaxation time is determined
by the scattering at piezoelectric potential of acoustic phonons with strong
screening. At different SAW frequencies the heating depends on the relationship
between and 1 and is determined either by the
instantaneously changing wave field (), or by the
average wave power ().Comment: RevTeX, 5 pages, 3 PS-figures, submitted to Physica Status
Sol.(Technical corrections in PS-figs
Single File Diffusion enhancement in a fluctuating modulated 1D channel
We show that the diffusion of a single file of particles moving in a
fluctuating modulated 1D channel is enhanced with respect to the one in a bald
pipe. This effect, induced by the fluctuations of the modulation, is favored by
the incommensurability between the channel potential modulation and the moving
file periodicity. This phenomenon could be of importance in order to optimize
the critical current in superconductors, in particular in the case where mobile
vortices move in 1D channels designed by adapted patterns of pinning sites.Comment: 4 pages, 4 figure
Squeezing as the source of inefficiency in the quantum Otto cycle
The availability of controllable macroscopic devices, which maintain quantum
coherence over relatively long time intervals, for the first time allows an
experimental realization of many effects previously considered only as
Gedankenexperiments, such as the operation of quantum heat engines. The
theoretical efficiency \eta of quantum heat engines is restricted by the same
Carnot boundary \eta_C as for the classical ones: any deviations from
quasistatic evolution suppressing \eta below \eta_C. Here we investigate an
implementation of an analog of the Otto cycle in a tunable quantum coherent
circuit and show that the specific source of inefficiency is the quantum
squeezing of the thermal state due to the finite speed of compression/expansion
of the system.Comment: 17 pages, 5 figure
Two-qubit parametric amplifier: large amplification of weak signals
Using numerical simulations, we show that two coupled qubits can amplify a
weak signal about hundredfold. This can be achieved if the two qubits are
biased simultaneously by this weak signal and a strong pump signal, both of
which having frequencies close to the inter-level transitions in the system.
The weak signal strongly affects the spectrum generated by the strong pumping
drive by producing and controlling mixed harmonics with amplitudes of the order
of the main harmonic of the strong drive. We show that the amplification is
robust with respect to noise, with an intensity of the order of the weak
signal. When deviating from the optimal regime (corresponding to strong qubit
coupling and a weak-signal frequency equal to the inter-level transition
frequency) the proposed amplifier becomes less efficient, but it can still
considerably enhance a weak signal (by several tens). We therefore propose to
use coupled qubits as a combined parametric amplifier and frequency shifter.Comment: 6 figure
Voltage-driven quantum oscillations in graphene
We predict unusual (for non-relativistic quantum mechanics) electron states
in graphene, which are localized within a finite-width potential barrier. The
density of localized states in the sufficiently high and/or wide graphene
barrier exhibits a number of singularities at certain values of the energy.
Such singularities provide quantum oscillations of both the transport (e.g.,
conductivity) and thermodynamic properties of graphene - when increasing the
barrier height and/or width, similarly to the well-known Shubnikov-de-Haas
(SdH) oscillations of conductivity in pure metals. However, here the SdH-like
oscillations are driven by an electric field instead of the usual
magnetically-driven SdH-oscillations.Comment: 4 pages, 4 figure
Estimates for parameters and characteristics of the confining SU(3)-gluonic field in an -meson
The confinement mechanism proposed earlier by the author is applied to
estimate the possible parameters of the confining SU(3)-gluonic field in an
-meson. For this aim the electric form factor of an
-meson is nonperturbatively computed in an explicit analytic form.
The estimates obtained are also consistent with the width of the
electromagnetic decay . The corresponding estimates of
the gluon concentrations, electric and magnetic colour field strengths are also
adduced for the mentioned field at the scales of the meson under consideration.Comment: 20 pages, LaTe
On-chip phonon-magnon reservoir for neuromorphic computing
Reservoir computing is a concept involving mapping signals onto a high-dimensional phase space of a dynamical system called “reservoir” for subsequent recognition by an artificial neural network. We implement this concept in a nanodevice consisting of a sandwich of a semiconductor phonon waveguide and a patterned ferromagnetic layer. A pulsed write-laser encodes input signals into propagating phonon wavepackets, interacting with ferromagnetic magnons. The second laser reads the output signal reflecting a phase-sensitive mix of phonon and magnon modes, whose content is highly sensitive to the write- and read-laser positions. The reservoir efficiently separates the visual shapes drawn by the write-laser beam on the nanodevice surface in an area with a size comparable to a single pixel of a modern digital camera. Our finding suggests the phonon-magnon interaction as a promising hardware basis for realizing on-chip reservoir computing in future neuromorphic architectures
- …