19 research outputs found

    Gene deletion chemoselectivity: codeletion of the genes for p16(INK4), methylthioadenosine phosphorylase, and the alpha- and beta-interferons in human pancreatic cell carcinoma lines and its implications for chemotherapy

    Get PDF
    Pancreatic carcinoma cells lines are known to have a high incidence of homozygous deletion of the candidate tumor suppressor gene p16 (MTS1/CDKN2), which resides in the chromosome 9p21 region. Here we: (a)examined a series of these cell lines for the incidence of codeletion of genes located near p16, in particular, the gene for the enzyme 5\u27-deoxy-5\u27-methylthioadenosine phosphorylase (MTAP) and the genes of the IFN-alpha and -beta cluster (IFNs); and (b) investigated whether therapeutic strategies could be developed that target malignant cells that have undergone the codeletion of such genes. Five of the eight pancreatic carcinoma cell lines were p16(-), MTAP was codeleted in all five cases. Because MTAP phosphorolyzes 5\u27-deoxy-5\u27-methylthioadenosine (MTA), generated as a byproduct of polyamine synthesis, to the salvageable purine base adenine, loss of this pathway in p16(-), MTAP(-) cells might sensitize these cells to methotrexate (MTX), the mechanism of action of which involves, in part, an inhibition of purine de novo synthesis. MTAP(+) normal keratinocytes and pancreatic carcinoma lines had relatively poor sensitivity, in terms of efficacy, to the purine nucleotide-starving actions of MTX. This may be in part due to the MTAP-dependent salvage of adenine moieties from endogenously generated MTA, because the MTAP inhibitor 5\u27-chloro-5\u27-de- oxyformycin A potentiates the antipurine actions of MTX in some of these MTAP(+) lines. Also, exogenous MTA (10 microM) reverses the growth-inhibitory actions of MTX in these lines. In contrast, MTAP(-) cell lines, which cannot recycle purines from endogenous MTA, have a relatively high sensitivity to the antipurine actions of MTX, which is not modulated by 5\u27-chloro-5\u27-deoxyformycin A or exogenous MTA. Thus the MTAP loss in malignant cells may be an example of gene deletion chemoselectivity, in which genetic deletions that occur as part of the oncogenic process render these cells more sensitive to particular anticancer agents than normal cells, which have not undergone such deletions. We also examined whether the loss of IFN genes sensitize cells to the growth-inhibitory actions of these cytokines. Three of the five p16(-) cell lines bore homozygous deletions of IFNA1 and IFNB1 genes, representing each end of the IFN-alpha,-beta gene cluster; one cell line bore a codeletion of the IFNA1 gene but retained the IFNB1 locus. Whereas the cell lines that were most sensitive to the growth-inhibitory effects of IFN-beta or IFN-alpha(2b), tended to be those with IFN deletions, there were enough exceptions to this pattern to indicate that the IFN genotype does not reliably predict IFN responsiveness

    Serum IGF-1 Concentrations Change With Soy and Seaweed Supplements in Healthy Postmenopausal American Women

    Get PDF
    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone important for growth and development. However, high-circulating serum concentrations in adults are associated with increased risk of postmenopausal breast cancer. Nutritional status and specific foods influence serum IGF-1 concentrations. Breast cancer incidence is typically low in Asian countries where soy is commonly consumed. Paradoxically, soy supplement trials in American women have reported significant increases in IGF-1. Seaweed also is consumed regularly in Asian countries where breast cancer risk is low. We investigated the possibility that seaweed could modify soy-associated increases in IGF-1 in American women. Thirty healthy postmenopausal women (mean age 58 yr) participated in this 14-wk double-blinded, randomized, placebo-controlled crossover clinical trial. Participants consumed 5 g/day placebo or seaweed (Alaria esculenta) in capsules for 7 wk. During the 7th wk, a high-soy protein isolate powder was added (2 mg/kg body weight aglycone equivalent isoflavones). Overnight fasting blood samples were collected after each intervention period. Soy significantly increased serum IGF-1 concentrations compared to the placebo (21.2 nmol/L for soy vs. 16.9 nmol/L for placebo; P = 0.0001). The combination of seaweed and soy significantly reduced this increase by about 40% (21.2 nmol/L for soy alone vs. 19.4 nmol/L; P = 0.01). Concurrent seaweed and soy consumption may be important in modifying the effect of soy on IGF-1 serum concentrations

    Increased Expression of the Interleukin-11 Receptor and Evidence of STAT3 Activation in Prostate Carcinoma

    No full text
    Previous investigations have shown that interleukin-6, a member of the JAK-STAT activating family of cytokines, plays an important role in prostate carcinoma. Here we demonstrate the co-expression of another member of this cytokine family, interleukin-11 (IL-11), and components of its receptor (interleukin-11 receptor; IL-11R), ie, IL-11Rα (involved in ligand recognition), and gp130 (involved in signal transduction) in cultured normal and malignant prostate-derived epithelial cell lines. In the DU-145 prostate carcinoma cell line, rhIL-11 stimulates a transient and dose-dependent increase in the tyrosine 705-phosphorylated, active form of STAT3 (STAT3 P-Tyr705), involved in the downstream signaling of IL-11R and other members of the gp130-dependent receptors. The ability of IL-11 to activate STAT3 in prostate-derived cells may be mechanistically important, given recent data suggesting that constitutively activated STAT3 may be associated with the malignant phenotype. In 51 human primary tissues derived from normal prostate, benign prostatic hyperplasia, and prostate carcinomas, IL-11Rα and gp130 were commonly expressed, with a statistically significant elevation in the expression of IL-11Rα in prostate carcinoma. Also, the tyrosine-phosphorylated, activated form of STAT3 was observed more prominently in the nuclei of cells residing in malignant glands compared to those in nonmalignant samples. Thus, the IL-11 receptor system is up-regulated in prostate carcinoma, and may be one part of a cytokine network that maintains STAT3 in its activated form in these tissues

    Neural precursor cells form rudimentary tissue-like structures in a rotating-wall vessel bioreactor

    No full text
    We have analyzed the biology of embryonic, epidermal growth factor-responsive murine neural precursor cells cultured in the high-aspect ratio vessel (HARV). Within 2-3 d of rotary-cell culture, such cells formed multiple, macroscopic, three-dimensional structures that were orders of magnitude larger than the cellular clusters ( neurospheres ) formed by these cells in conventional stationary-flask cultures. Each HARV structure was composed of a multilayered cellular shell surrounding one or more central cavities that were bordered by pyknotic cell nuclei. Although the cells in the HARV structures were more pleomorphic than those in neurospheres, the structures did not appear to represent primitive neural tumors: the formation of HARV structures by precursor cells was not an irreversible phenotypic change, and the structures did not originate from the clonal expansion of single-progenitor cells; the growth rate and invasiveness of the cells in HARVs were less than those in flasks; and HARV-cultured cells did not form tumors after subcutaneous inoculation into the flanks of NOD-scid/scid mice. Immunohistochemical analysis suggested that HARV structures might be novel prototissues characterized by a crude, but organized, architecture, with a surface layer of immature proliferating cells (nestin- and proliferating cell nuclear antigen-positive) that enclosed strata of more differentiated cells (beta-tubulin III- and glial fibrillary acidic protein-positive) within. Rotary-cell culture may have significant implications for the eventual utility of neural precursors for clinical neurotransplantation

    Expression of methylthioadenosine phosphorylase cDNA in p16-, MTAP- malignant cells: restoration of methylthioadenosine phosphorylase-dependent salvage pathways and alterations of sensitivity to inhibitors of purine de novo synthesis

    No full text
    5\u27-Deoxy-5\u27-methylthioadenosine phosphorylase (MTAP) is involved in the salvage of adenine and methylthio moieties of 5\u27-deoxy-5\u27-methylthioadenosine, a byproduct of polyamine synthesis, to adenine nucleotides and methionine, respectively. The gene encoding MTAP, MTAP, is frequently codeleted along with the tumor suppressor gene p16 in malignant cells bearing homozygous deletions in the chromosome 9p21 region. p16-, MTAP- malignant cells have been shown to be more susceptible to the purine de novo inhibitory actions of antifolates such as methotrexate than are p16+, MTAP+ cells. To understand the underlying mechanism, we reintroduced MTAP activity into two p16-, MTAP- cell model systems, the MiaPaCa-2 and PANC-1 human pancreatic carcinoma cell lines, by transfection with MTAP cDNA. It was found that transfection with MTAP cDNA (i) restored both the MTAP-dependent adenine and methionine salvage pathways, (ii) decreased the rates of purine de novo synthesis (18-47% lower than the wild-type or sham-transfected counterparts), and (iii) decreased cellular sensitivity to the antipurine-related growth-inhibitory actions of methotrexate and azaserine. These data support the hypothesis that operation of the MTAP-dependent adenine salvage pathway renders MTAP+ cells less dependent on de novo purine synthesis and hence less susceptible than MTAP- malignant cells to the growth-inhibitory actions of agents (e.g. antifolates) whose mechanism of action in part involves the de novo purine pathway. These findings provide a theoretical basis for the relatively selective action certain antifolates may have against MTAP-deficient malignancies

    Normal breast stem cells, malignant breast stem cells, and the perinatal origin of breast cancer

    No full text
    Both experimental and epidemiological evidence support the concept that the in utero environment can influence an individual\u27s risk of breast cancer in adult life. Recently identified breast stem cells may be the key to understanding the mechanism underlying this phenomenon. It has been theorized that breast cancers arise from breast stem cells. Our emerging view of the characteristics of normal breast stem cells and their link to malignant breast stem cells is reviewed here. It has also been postulated that factors that expand the normal breast stem cell pool in utero would increase the probability that one such cell might undergo an oncogenic mutation or epigenetic change. We discuss how a number of proposed perinatal determinants of adult breast cancer risk, including (1) in utero estrogen and IGF-1 levels, (2) birthweight, (3) breast density, and (4) early-life mutagen exposure, can be tied together by this breast stem cell burden hypothesis

    Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis

    Get PDF
    INTRODUCTION: Prenatal levels of mitogens may influence the lifetime breast cancer risk by driving stem cell proliferation and increasing the number of target cells, and thereby increasing the chance of mutation events that initiate oncogenesis. We examined in umbilical cord blood the correlation of potential breast epithelial mitogens, including hormones and growth factors, with hematopoietic stem cell concentrations serving as surrogates of overall stem cell potential. METHODS: We analyzed cord blood samples from 289 deliveries. Levels of hormones and growth factors were correlated with concentrations of stem cell and progenitor populations (CD34+ cells, CD34+CD38- cells, CD34+c-kit+ cells, and granulocyte-macrophage colony-forming units). Changes in stem cell concentration associated with each standard deviation change in mitogens and the associated 95% confidence intervals were calculated from multiple regression analysis. RESULTS: Cord blood plasma levels of insulin-like growth factor-1 (IGF-1) were strongly correlated with all the hematopoietic stem and progenitor concentrations examined (one standard-deviation increase in IGF-1 being associated with a 15-19% increase in stem/progenitor concentrations, all P \u3c 0.02). Estriol and insulin-like growth factor binding protein-3 levels were positively and significantly correlated with some of these cell populations. Sex hormone-binding globulin levels were negatively correlated with these stem/progenitor pools. These relationships were stronger in Caucasians and Hispanics and were weaker or not present in Asian-Americans and African-Americans. CONCLUSION: Our data support the concept that in utero mitogens may drive the expansion of stem cell populations. The correlations with IGF-1 and estrogen are noteworthy, as both are crucial for mammary gland development

    Isolation of immortalized, INK4a/ARF-deficient cells from the subventricular zone after in utero N-ethyl-N-nitrosourea exposure

    No full text
    OBJECT: Brain tumors, including gliomas, develop several months after rats are exposed in utero to N-ethyl-N-nitroso-urea (ENU). Although pathological changes cannot be detected until these animals are several weeks old, the process that eventually leads to glioma formation must begin soon after exposure given the rapid clearance of the carcinogen and the observation that transformation of brain cells isolated soon after exposure occasionally occurs. This model can therefore potentially provide useful insights about the early events that precede overt glioma formation. The authors hypothesized that future glioma cells arise from stem/progenitor cells residing in or near the subventricular zone (SVZ) of the brain. METHODS: Cells obtained from the SVZ or corpus striatum in ENU-exposed and control rats were cultured in an epidermal growth factor (EGF)-containing, chemically defined medium. Usually, rat SVZ cells cultured in this manner (neurospheres) are nestin-positive, undifferentiated, and EGF-dependent and undergo cell senescence. Consistent with these prior observations, control SVZ cells undergo senescence by the 12th to 15th doubling (20 of 20 cultures). In contrast, three of 15 cultures of cells derived from the SVZs of individual ENU-treated rats continue to proliferate for more than 60 cell passages. Each of these nestin-expressing immortalized cell lines harbored a common homozygous deletion spanning the INK4a/ARF locus and was unable to differentiate into neural lineages after exposure to specific in vitro stimuli. Nevertheless, unlike the rat C6 glioma cell line, these immortalized cell lines demonstrate EGF dependence and low clonogenicity in soft agar and did not form tumors after intracranial transplantation. CONCLUSIONS: Data in this study indicated that immortalized cells may represent glioma precursors that reside in the area of the SVZ after ENU exposure that may serve as a reservoir for further genetic and epigenetic hits that could eventually result in a full glioma phenotype
    corecore