8 research outputs found

    The Impact of Climate Change on Water Resource Availability in a Trans-Boundary Basin in West Africa: The Case of Sassandra

    No full text
    In the context of climate change in West Africa characterized by a reduction of precipitation, this study was conducted to evaluate the impact of climate change on water resources from now to the end of the 21st century in the transboundary watershed of the Sassandra River shared by Guinea and Côte d’Ivoire. Historical and future climate data of Representative Concentration Pathways (RCPs) 4.5 and 8.5 were projected with the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM4). The hydrological modeling of the river basin was carried out with the conceptual hydrological model, GR2M, a monthly time steps model that allows for the assessment of the discharge of the Sassandra River for each climate scenario according to the time periods 2021–2040 (Horizon 2030), 2041–2060 (Horizon 2050), 2061–2080 (Horizon 2050), and 2061–2080 (Horizon 2090). The results show a reduction in annual discharge when compared to the baseline (1961–1980). For RCP 4.5, the observed values go from −1.2% in 2030 to −2.3% in 2070 and rise to −2.1% in 2090. Concerning RCP 8.5, we saw a variation from −4.2 to −7.9% in Horizons 2030 and 2090, respectively. With the general decrease in rainfall in West Africa, it is appropriate to assess the impact on water resources of the largest rivers (Niger, Gambia, and Senegal) that irrigate the Sahelo–Saharian zone

    Rainfall Variability across the Agneby Watershed at the Agboville Outlet in Côte d’Ivoire, West Africa

    No full text
    This study analyzes, at local and regional scales, the rainfall variability across the Agneby watershed at the Agboville outlet over the period 1950–2013. Daily rainfall data from 14 rain gauges are used. The methods used are based, firstly, on the rainfall index which aims to characterize the inter-annual and decadal variability of rainfall and, secondly, on the moving average to determine the dynamics of the mean seasonal cycle of the precipitations. Furthermore, the Pettitt test and the Hubert segmentation are applied to detect change-point in the rainfall series. At the basin scale, analysis of rainfall signals composites has shown that the rainfall deficit was more pronounced after the leap of monsoon. Dry years were characterized by an early monsoon demise which is remarkable after 1968. Moreover, the years after 1969 presented a shift of the peaks in precipitation for about 12 days. These peaks were reached early. The rainfall signal showed that the rainfall deficit for the period after 1968, relatively to the period before, was 10% in June against 36% in October for the average rainfall in the Agneby basin. At the local scale, the deficit of the peaks depends on the location. These rainfall deficits were 23% against 36.3% in June for the Agboville and Bongouanou rain gauges, respectively

    Spatio-Temporal Analysis and Water Quality Indices (WQI): Case of the Ébrié Lagoon, Abidjan, Côte d’Ivoire

    No full text
    For decades, the Ébrié Lagoon in Côte d’Ivoire has been the receptacle of wastewater effluent and household waste transported by runoff water. This work assesses the spatio-temporal variability of the Ébrié lagoon water quality at the city of Abidjan. The methodological approach used in this study is summarized in three stages: the choice and standardization of the parameters for assessing water quality for uses such as aquaculture, irrigation, livestock watering, and sports and recreation; the weighting of these parameters using the Hierarchical Analysis Process (AHP) of Saaty; and finally, the aggregation of the weighted parameters or factors. Physicochemical and microbiological analysis data on the waters of the Ébrié lagoon for June and December of 2014 and 2015 were provided by the Ivorian Center for Anti-Pollution (Centre Ivoirien Anti-Pollution, CIAPOL), and the concentrations of trace elements in sediments (As, Cd, Cr, Pb, Zn) were used. The aggregation of standardized and weighted parameters allowed the calculation of the Water Quality Indices (WQI) by usage for each bays of the lagoon. The results show that in both 2014 and 2015, the waters of the Ébrié lagoon were generally of poor quality for the different uses examined in this study (aquaculture, irrigation, livestock watering, and sport and recreation) with an accentuation in 2015. However, some bays of the lagoon have waters of dubious to satisfactory quality. This study contributes an improved evaluation of the Ébrié lagoon waters
    corecore