41 research outputs found

    Molecular Dynamic Simulation Model for the Growth of Thin Films in The Structure Zone Model

    Get PDF
    A two dimensional molecular dynamic (atomistic) simulation model was used to investigate the relationship between the nano-structure and the deposition parameters; namely, substrate temperature, deposition rate, angle of incidence, surface roughness. Qualitative agreements with the predictions of the structure zone model (SZM) and the theoretical results of Srolovitze and coworkers (1988), as well as expectations through changes in the activated processes during film growth due to changes in deposition parameters (Grovenor and coworkers (1984)) are obtained. It is shown that by enhancing the atomic mobility (i.e., increasing the substrate temperature or/and lowering the deposition rate) films of higher density with fewer voids are produced. By increasing the deposition angle, the nano-structure of the film changes from a dense film with few voids, to a nano-structure with columns/boundless inclined with the same angle ( β ) towards the incidence atoms with elongated voids. The angle β increases with increasing the deposition angle (α ), and in agreement with the tangent rule (Dirks and Leamy (1977)). The angle of bundles (or the angle of the formation of the voids between atomic bundles), and columnar structure are caused by shadowing effects. Results showed that β decreases slowly with increasing surface mobility (i.e., increasing the substrate temperature or/and reducing the deposition rate). In general, the model provides almost all predicted results and agrees well with observation

    Preferred orientation in erbium thin films observed using synchrotron radiation

    Full text link

    Effect of microstructural evolution on magnetic properties of Ni thin films

    Get PDF
    Copyright © Indian Academy of Sciences.The magnetic properties of Ni thin films, in the range 20–500 nm, at the crystalline-nanocrystalline interface are reported. The effect of thickness, substrate and substrate temperature has been studied. For the films deposited at ambient temperatures on borosilicate glass substrates, the crystallite size, coercive field and magnetization energy density first increase and achieve a maximum at a critical value of thickness and decrease thereafter. At a thickness of 50 nm, the films deposited at ambient temperature onto borosilicate glass, MgO and silicon do not exhibit long-range order but are magnetic as is evident from the non-zero coercive field and magnetization energy. Phase contrast microscopy revealed that the grain sizes increase from a value of 30–50 nm at ambient temperature to 120–150 nm at 503 K and remain approximately constant in this range up to 593 K. The existence of grain boundary walls of width 30–50 nm is demonstrated using phase contrast images. The grain boundary area also stagnates at higher substrate temperature. There is pronounced shape anisotropy as evidenced by the increased aspect ratio of the grains as a function of substrate temperature. Nickel thin films of 50 nm show the absence of long-range crystalline order at ambient temperature growth conditions and a preferred [111] orientation at higher substrate temperatures. Thin films are found to be thermally relaxed at elevated deposition temperature and having large compressive strain at ambient temperature. This transition from nanocrystalline to crystalline order causes a peak in the coercive field in the region of transition as a function of thickness and substrate temperature. The saturation magnetization on the other hand increases with increase in substrate temperature.University Grants Commission for Centre of Advanced Studies in Physic

    Substrate temperature dependence on the optical properties of Cu and Ag thin films

    No full text
    Copper (260 nm) and Ag (1000 nm) films deposited on glass substrates, at different substrate temperatures. Their optical properties were measured by ellipsometry (single wavelength of 589.3 nm) and spectrophotometry in the spectral range of 200–2600 nm. Kramers Kronig method was used for the analysis of the reflectivity curves of Cu and Ag films to obtain the optical constants of the films, while ellipsometry measurements was carried out as an independent method. The influence of substrate temperature on the microstructure of thin metallic films [Structure Zone Model (SZM)] is well established [Movchan and Demchishin, Phys. Met. Metall. 28, 83 (1969); Thornton, J. Vac. Sci. Technol. 12, 830 (1975); Savaloni and Bagheri Najmi, Vacuum 66, 49 (2002); Savaloni and Player, Vacuum 46, 167 (1995); Savaloni et al., Vacuum 43, 965 (1992)]. The Effective Medium Approximation (EMA) analysis was used to establish the relationship between the SZM and EMA predictions. Good agreements between SZM as a function of substrate temperature and the values of volume fraction of voids obtained from EMA analysis, is achieved; by increasing the substrate temperature the separation of the metallic grains decreases, hence, the volume fraction of voids decreases and denser films formed. The predictions of the Drude free-electron theory are compared with experimental results for dielectric functions of Cu and Ag films of different substrate temperature. The real part of the dielectric constant is decreased with increasing the substrate temperature, while the imaginary part of the dielectric constant increased with temperature for both materials over the whole energy range measured, including intraband and interband regions. The increase of the imaginary part in the interband region suggests a temperature and frequency dependence of the relaxation time in the Drude model, namely $\tau ^{-1}\left( \omega \right)=\tau _0^{-1} +\beta \omega ^2.

    The elastic scattering of 3.0 MeV polarised neutrons by medium mass nuclei

    No full text
    SIGLEAvailable from British Library Lending Division - LD:D56829/85 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore