64 research outputs found

    Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode

    Get PDF
    This paper deals with the treatment of aqueous phenol solutions using an electrochemical technique. Phenol can be partly eliminated from aqueous solution by electrochemically initiated polymerisation. Galvanostatic electrolyses of phenol solutions at concentration up to 0.1 mol dm−3 were carried out on a Ta/PbO2 anode. The polymers formed are insoluble in acidic medium but soluble in alkaline. These polymers were filtered and then dissolved in aqueous solution of sodium hydroxide (1 mol dm−3). The polymers formed were quantified by total organic carbon (TOC) measurement. It was found that the conversion of phenol into polymers increases as a function of initial concentration, anodic current density, temperature, and solution pH. The percentage of phenol polymerised can reach 15%

    A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes

    Get PDF
    This work compares two electrode materials used to mineralize phenol contained in waste waters. Two disks covered with either boron doped diamond (BDD) or PbO2 were used as anodes in a one compartment flow cell under the same hydrodynamic conditions. Efficiencies of galvanostatic electrolyses are compared on the basis of measurements of Total Organic Carbon (TOC) and Chemical Oxygen Demand (COD). Galvanostatic electrolyses were monitored by analysis of phenol and of its oxidation derivatives to evaluate the operating time needed for complete elimination of toxic aromatics. The experimental current efficiency is close to the theoretical value for the BDD electrode. Other parameters being equal, phenol species disappeared at the same rate using the two electrode materials but the BDD anode showed better efficiency to eliminate TOC and COD. Moreover, during the electrolysis less intermediates are formed with BDD compared to PbO2 whatever the current density. A comparison of energy consumption is given based on the criterion of 99% removal of aromatic compounds

    Influence of temperature and applied potential on the permeability of polyphenol films prepared on vitreous carbon in acid and alkaline media

    Get PDF
    The electrochemical polymerization of phenol is known to rapidly produce a thin insulating film at the anode surface. This film generally blocks further polymerization. The objective of this study is to show that, depending on the operating conditions, polymeric films resulting from phenol oxidation present different properties and that certain films can be so porous that they allow the oxidation of phenol to continue. The deposition of polyphenol films with improved permeability could be attractive in the removal of phenol from polluted solutions. Polyphenol films were prepared in aqueous solution on a vitreous carbon anode either by cyclic voltammetry or by electro-oxidation at constant potential. The apparent permeability P (%) of the films prepared by these techniques was evaluated by monitoring changes in the electrode response towards phenol and potassium ferricyanide at 25 and 85°C and as a function of the potential applied during electropolymerization performed either in acidic (1 mol L-¹H₂SO₄) or in alkaline (1 mol L-¹ NaOH) aqueous solution. It was shown that: (1) the polyphenol film electrosynthesized in alkaline medium was more permeable than that prepared in acidic medium, (2) the apparent permeability was higher when the polyphenol film was electrosynthesized with simultaneous oxygen evolution and (3) the use of a high temperature in the polyphenol film preparation, especially in the presence of a concomitant oxygen evolution, significantly enhanced its apparent permeability (P ≥ 100 %). These results are interpreted in terms of a mixed-transport mechanism involving both pore and membrane diffusion. The effect of the permeability of the polymeric film on the removal of phenol from aqueous solution by electropolymerization is discussed

    Influence of temperature and applied potential on the permeability of polyphenol films prepared on vitreous carbon in acid and alkaline media

    Get PDF
    The electrochemical polymerization of phenol is known to rapidly produce a thin insulating film at the anode surface. This film generally blocks further polymerization. The objective of this study is to show that, depending on the operating conditions, polymeric films resulting from phenol oxidation present different properties and that certain films can be so porous that they allow the oxidation of phenol to continue. The deposition of polyphenol films with improved permeability could be attractive in the removal of phenol from polluted solutions. Polyphenol films were prepared in aqueous solution on a vitreous carbon anode either by cyclic voltammetry or by electro-oxidation at constant potential. The apparent permeability P (%) of the films prepared by these techniques was evaluated by monitoring changes in the electrode response towards phenol and potassium ferricyanide at 25 and 85°C and as a function of the potential applied during electropolymerization performed either in acidic (1 mol L-¹H₂SO₄) or in alkaline (1 mol L-¹ NaOH) aqueous solution. It was shown that: (1) the polyphenol film electrosynthesized in alkaline medium was more permeable than that prepared in acidic medium, (2) the apparent permeability was higher when the polyphenol film was electrosynthesized with simultaneous oxygen evolution and (3) the use of a high temperature in the polyphenol film preparation, especially in the presence of a concomitant oxygen evolution, significantly enhanced its apparent permeability (P ≥ 100 %). These results are interpreted in terms of a mixed-transport mechanism involving both pore and membrane diffusion. The effect of the permeability of the polymeric film on the removal of phenol from aqueous solution by electropolymerization is discussed
    • …
    corecore