27 research outputs found

    Epithelial cell senescence impairs repair process and exacerbates inflammation after airway injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genotoxic stress, such as by exposure to bromodeoxyuridine (BrdU) and cigarette smoke, induces premature cell senescence. Recent evidence indicates that cellular senescence of various types of cells is accelerated in COPD patients. However, whether the senescence of airway epithelial cells contributes to the development of airway diseases is unknown. The present study was designed to test the hypothesis that premature senescence of airway epithelial cells (Clara cells) impairs repair processes and exacerbates inflammation after airway injury.</p> <p>Methods</p> <p>C57/BL6J mice were injected with the Clara-cell-specific toxicant naphthalene (NA) on days 0, 7, and 14, and each NA injection was followed by a daily dose of BrdU on each of the following 3 days, during which regenerating cells were allowed to incorporate BrdU into their DNA and to senesce. The p38 MAPK inhibitor SB202190 was injected 30 minutes before each BrdU dose. Mice were sacrificed at different times until day 28 and lungs of mice were obtained to investigate whether Clara cell senescence impairs airway epithelial regeneration and exacerbates airway inflammation. NCI-H441 cells were induced to senesce by exposure to BrdU or the telomerase inhibitor MST-312. Human lung tissue samples were obtained from COPD patients, asymptomatic smokers, and nonsmokers to investigate whether Clara cell senescence is accelerated in the airways of COPD patients, and if so, whether it is accompanied by p38 MAPK activation.</p> <p>Results</p> <p>BrdU did not alter the intensity of the airway epithelial injury or inflammation after a single NA exposure. However, after repeated NA exposure, BrdU induced epithelial cell (Clara cell) senescence, as demonstrated by a DNA damage response, p21 overexpression, increased senescence-associated ÎČ-galactosidase activity, and growth arrest, which resulted in impaired epithelial regeneration. The epithelial senescence was accompanied by p38 MAPK-dependent airway inflammation. Senescent NCI-H441 cells impaired epithelial wound repair and secreted increased amounts of pro-inflammatory cytokines in a p38 MAPK-dependent manner. Clara cell senescence in COPD patients was accelerated and accompanied by p38 MAPK activation.</p> <p>Conclusions</p> <p>Senescence of airway epithelial cells impairs repair processes and exacerbates p38 MAPK-dependent inflammation after airway injury, and it may contribute to the pathogenesis of COPD.</p

    Satellite Cells Senescence in Limb Muscle of Severe Patients with COPD

    Get PDF
    Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada Rationale: The maintenance of peripheral muscle mass may be compromised in chronic obstructive pulmonary disease (COPD) due to premature cellular senescence and exhaustion of the regenerative potential of the muscles. Methods: Vastus lateralis biopsies were obtained from patients with COPD (n = 16) and healthy subjects (n = 7). Satellite cell number and the proportion of central nuclei, as a marker of muscle regenerative events, were assessed on cryosections. Telomere lengths, used as a marker of cellular senescence, were determined using Southern blot analyses. Results: Central nuclei proportion was significantly higher in patients with COPD with a preserved muscle mass compared to controls and patients with COPD with muscle atrophy (p,0.001). In COPD, maximal telomere length was significantly decreased compared to controls (p,0.05). Similarly, minimal telomere length was significantly reduced in GOLD III–IV patients with muscle atrophy compared to controls (p,0.005). Minimal, mean and maximum telomere lengths correlated with mid-thigh muscle cross-sectional area (MTCSA) (R = 0.523, p = 0.005; R = 0.435, p = 0.019 and R = 0.491, p = 0.009, respectively). Conclusions: Evidence of increased regenerative events was seen in GOLD III–IV patients with preserved muscle mass. Shortening of telomeres in GOLD III–IV patients with muscle atrophy is consistent with an increased number of senescen
    corecore