812 research outputs found

    Ion-Neutral Collisions in the Interstellar Medium: Wave Damping and Elimination of Collisionless Processes

    Full text link
    Most phases of the interstellar medium contain neutral atoms in addition to ions and electrons. This introduces differences in plasma physics processes in those media relative to the solar corona and the solar wind at a heliocentric distance of 1 astronomical unit. In this paper, we consider two well-diagnosed, partially-ionized interstellar plasmas. The first is the Diffuse Ionized Gas (DIG) which is probably the extensive phase in terms of volume. The second is the gas that makes up the Local Clouds of the Very Local Interstellar Medium (VLISM). Ion-neutral interactions seem to be important in both media. In the DIG, ion-neutral collisions are relatively rare, but sufficiently frequent to damp magnetohydrodynamic (MHD) waves (as well as propagating MHD eddies) within less than a parsec of the site of generation. This result raises interesting questions about the sources of turbulence in the DIG. In the case of the VLISM, the ion-neutral collision frequency is higher than that in the DIG, because the hydrogen is partially neutral rather than fully ionized. We present results showing that prominent features of coronal and solar wind turbulence seem to be absent in VLISM turbulence. For example, ion temperature does not depend on ion mass. This difference may be attributable to ion-neutral collisions, which distribute power from more effectively heated massive ions such as iron to other ion species and neutral atoms.Comment: Submitted to American Institute of Physics Conference Proceedings for conference "Partially Ionized Plasmas Throughout the Cosmos", Dastgeer Shaikh, edito

    Observational Tests of the Properties of Turbulence in the Very Local Interstellar Medium

    Get PDF
    The Very Local Interstellar Medium (VLISM) contains clouds which consist of partially-ionized plasma. These clouds can be effectively diagnosed via high resolution optical and ultraviolet spectroscopy of the absorption lines they form in the spectra of nearby stars. Among the information provided by these spectroscopic measurements are the root-mean-square velocity fluctuation due to turbulence in these clouds and the ion temperature, which may be partially determined by dissipation of turbulence. We consider whether this turbulence resembles the extensively studied and well-diagnosed turbulence in the solar wind and solar corona. Published observations are used to determine if the velocity fluctuations are primarily transverse to a large-scale magnetic field, whether the temperature perpendicular to the large scale field is larger than that parallel to the field, and whether ions with larger Larmor radii have higher temperatures than smaller gyroradius ions. Although a thorough investigation of the data is underway, a preliminary examination of the published data shows neither evidence for anisotropy of the velocity fluctuations or temperature, nor Larmor radius-dependent heating. These results indicate differences between solar wind and Local Cloud turbulence.Comment: Paper submitted to Nonlinear Processes in Geophysic

    To germinate or not to germinate : a question of dormancy relief not germination stimulation

    Get PDF
    A common understanding of the control of germination through dormancy is essential for effective communication between seed scientists whether they are ecologists, physiologists or molecular biologists. Vleeshouwers et al. (1995) realized that barriers between disciplines limited progress and through insightful conclusions in their paper ‘Redefining seed dormancy: an attempt to integrate physiology and ecology’, they did much to overcome these barriers at that time. However, times move on, understanding develops, and now there is a case for ‘Redefining seed dormancy as an integration of physiology, ecology and molecular biology’. Finch-Savage and Leubner-Metzger (2006) had this in mind when they extended and re-interpreted the definition of dormancy proposed by Vleeshouwers et al. (1995), by considering dormancy as a having a number of layers that must be removed, with the final layer of dormancy being synonymous with the stimulation/induction of germination

    Environment sensing in spring-dispersed seeds of a winter annual Arabidopsis influences the regulation of dormancy to align germination potential with seasonal changes

    Get PDF
    Seed dormancy cycling plays a crucial role in the lifecycle timing of many plants. Little is known of how the seeds respond to the soil seed bank environment following dispersal in spring into the short-term seed bank before seedling emergence in autumn. Seeds of the winter annual Arabidopsis ecotype Cvi were buried in field soils in spring and recovered monthly until autumn and their molecular eco-physiological responses were recorded. DOG1 expression is initially low and then increases as dormancy increases. MFT expression is negatively correlated with germination potential. Abscisic acid (ABA) and gibberellin (GA) signalling responds rapidly following burial and adjusts to the seasonal change in soil temperature. Collectively these changes align germination potential with the optimum climate space for seedling emergence. Seeds naturally dispersed to the soil in spring enter a shallow dormancy cycle dominated by spatial sensing that adjusts germination potential to the maximum when soil environment is most favourable for germination and seedling emergence upon soil disturbance. This behaviour differs subtly from that of seeds overwintered in the soil seed bank to spread the period of potential germination in the seed population (existing seed bank and newly dispersed). As soil temperature declines in autumn, deep dormancy is re-imposed as seeds become part of the persistent seed bank

    Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments

    Get PDF
    Many molecular mechanisms that regulate dormancy have been identified individually in controlled laboratory studies. However, little is known about how the seed employs this complex suite of mechanisms during dormancy cycling in the variable environment of the soil seed bank. Nevertheless, this behavior is essential to ensure germination takes place in a favourable habitat and climate space, and in the correct season for the resulting plant to complete its life cycle. During their time in the soil seed bank seeds continually adjust their dormancy status by sensing a range of environmental signals. Those related to slow seasonal change (e.g. temperature) are used for temporal sensing to determine the time of year and depth of dormancy. This alters their sensitivity to signals related to their spatial environment (e.g. light, nitrate, water potential) that indicate conditions are suitable for germination, and so trigger the termination of dormancy. We review work on the physiological, molecular and ecological aspects of seed dormancy in Arabidopsis and interpret it in the context of dormancy cycling in the soil seed bank. This approach has provided new insight into the coordination of mechanisms and signaling networks and the multidimensional sensing that regulates dormancy cycling in a variable environment

    Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling resulting in winter and summer annual phenotypes

    Get PDF
    Seeds use environmental cues to sense the seasons and their surroundings to initiate the plants life cycle. Dormancy cycling underlying this process is extensively described, but the molecular mechanism is largely unknown. To address this we selected a range of representative genes from published array experiments in the laboratory and investigated their expression patterns in seeds of Arabidopsis ecotypes, having contrasting life cycles, over an annual dormancy cycle in the field. We show how mechanisms identified in the laboratory are coordinated in response to the soil environment to determine dormancy cycles that result in winter and summer annual phenotypes. Our results are consistent with a seed specific response to seasonal temperature patterns (temporal sensing) involving the gene DELAY OF GERMINATION1 (DOG1) that indicates the correct season; and concurrent temporally driven co-opted mechanisms that sense spatial signals i.e. nitrate via CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) phosphorylation of the NITRATE TRANSPORTER 1 (NRT1.1) and light via PHYTOCHROME A (PHYA). In both ecotypes studied, when all three genes have low expression there is enhanced GIBBERELLIN 3 BETA-HYDROXYLASE 1 (GA3ox1) expression, exhumed seeds have the potential to germinate in the laboratory, and the initiation of seedling emergence occurs following soil disturbance (exposure to light) in the field. Unlike DOG1, expression of MOTHER of FLOWERING TIME (MFT) has an opposite thermal response in seeds of the two ecotypes indicating a role in determining their different dormancy cycling phenotypes

    Decision Framework for Cattle Feeders

    Get PDF
    The purpose of this study was to develop a framework useful to cattle feeders in the buying and marketing process for a specific future feeding period by reducing the uncertainty associated with future live cattle spot prices. The live cattle futures contract was examined to see if it provided the cattle feeder with a means of accomplishing certain managerial objectives. Many authors conclude that utilizing the live cattle futures contract as a hedging mechanism does offer a means of obtaining managerial goals. Bayesian Analysis provided the method of reducing price risk by obtaining additional information. This method was then employed to evaluate five alternative strategies that were available to the cattle feeder. The analysis reveals that Bayesian Analysis can reduce price risk involved in the cattle feeder's decision process of buying and marketing cattle by gathering additional information from experts in the cattle feeding industry. It was concluded that no specific strategy would produce the best results every time.Business Administratio

    Changes in phenological events in response to a global warming scenario reveal greater adaptability of winter annual compared to summer annual Arabidopsis ecotypes

    Get PDF
    Background and Aims The impact of global warming on life cycle timing is uncertain. We investigated changes in life cycle timing in a global warming scenario. We compared Arabidopsis thaliana ecotypes adapted to the warm/dry Cape Verdi Islands (Cvi), Macaronesia, and the cool/wet climate of the Burren (Bur), Ireland, Northern Europe. These are obligate winter and summer annuals respectively. Methods Using a global warming scenario predicting a 4°C temperature rise from 2011 to circa 2080 we produced F1 seeds at each end of a thermogradient tunnel. Each F1 cohort (cool and warm) then produced F2 seeds at both ends of the thermal gradient in winter and summer annual life cycles. F2 seeds from the winter life cycle were buried at three positions along the gradient to determine the impact of temperature on seedling emergence in a simulated winter life cycle. Key Results In a winter life cycle, increasing temperatures advanced flowering time by 10.1 days °C-1 in the winter annual and 4.9 days °C-1 in the summer annual. Plant size and seed yield responded positively to global warming in both ecotypes. In a winter life cycle, the impact of increasing temperature on seedling emergence timing was positive in the winter annual, but negative in the summer annual. Global warming reduced summer annual plant size and seed yield in a summer life cycle. Conclusions Seedling emergence timing observed in the north European summer annual ecotype may exacerbate the negative impact of predicted increased spring and summer temperatures on their establishment and reproductive performance. In contrast, seedling establishment of the Macaronesian winter annual may benefit from higher soil temperatures that will delay emergence until autumn, but which also facilitates earlier spring flowering and consequent avoidance of high summer temperatures. Such plasticity gives winter annual Arabidopsis ecotypes a distinct advantage over summer annuals in expected global warming scenarios. This highlights the importance of variation in the timing of seedling establishment in understanding plant species responses to Anthropogenic Climate Change
    corecore