5 research outputs found

    Kablosuz Erişim Şebekeleri İçin İşbirlikçi Oyun Teorisi İle Şebeke Seçimi

    Get PDF
    Günümüzde giderek daha popüler hale gelen mobil terminallerin, diğer iletişim araçlarıyla etkili bir şekilde iletişim kurmaları için, hangi şebekeye bağlı olduğunu bilmek çok önemlidir. Bu çalışmada şebeke seçim senaryosunda dört aday şebeke (UMTS, GSM, WLAN, LTE-A) ve altı farklı kritere sahip mobil terminal için dört farklı trafik sınıfı bulunmaktadır. Her trafik sınıfı için hangi seçim kriterlerinin önemli olduğunu bulmak için Analitik Hiyerarşi Prosesi (AHP) yöntemi kullanılmıştır. İşbirlikçi oyun teorisi ile aday şebekelerin sahip olduğu ve kullanıcılara sağlayabilecekleri potansiyel kaynak değerleri elde edilmiştir. Kaynakların dağıtımı işbirlikçi oyun teorisi çözüm yöntemlerinden olan Shapley yöntemi ile hesaplanmıştır. Sonuçlar değerlendirildiğinde, WLAN şebekesinin tüm trafik sınıflarında en yüksek verimi elde etmek için en iyi seçim olduğu bulunmuştur

    Synthesis, Molecular Docking Studies, and Antifungal Activity Evaluation of New Benzimidazole-Triazoles as Potential Lanosterol 14α-Demethylase Inhibitors

    No full text
    Due to anticandidal importance of azole compounds, a new series of benzimidazole-triazole derivatives (5a–5s) were designed and synthesized as ergosterol inhibitors. The chemical structures of the target compounds were characterized by spectroscopic methods. The final compounds were screened for antifungal activity against Candida glabrata (ATCC 90030), Candida krusei (ATCC 6258), Candida parapsilosis (ATCC 22019), and Candida albicans (ATCC 24433). Compounds 5i and 5s exhibited significant inhibitory activity against Candida strains with MIC50 values ranging from 0.78 to 1.56 μg/mL. Cytotoxicity results revealed that IC50 values of compounds 5i and 5s against NIH/3T3 are significantly higher than their MIC50 values. Effect of the compounds 5i and 5s against ergosterol biosynthesis was determined by LC-MS-MS analysis. Both compounds caused a significant decrease in the ergosterol level. The molecular docking studies were performed to investigate the interaction modes between the compounds and active site of lanosterol 14-α-demethylase (CYP51), which is as a target enzyme for anticandidal azoles. Theoretical ADME predictions were also calculated for final compounds

    Synthesis, in vitro enzyme activity and molecular docking studies of new benzylamine-sulfonamide derivatives as selective MAO-B inhibitors

    No full text
    Many studies have been conducted on the selective inhibition of human monoamine oxidase B (hMAO-B) enzyme using benzylamine-sulphonamide derivatives. Using various chemical modifications on BB-4h, which was reported previously by our team and showed a significant level of MAO-B inhibition, novel benzylamine-sulphonamide derivatives were designed, synthesised, and their MAO inhibition potentials were evaluated. Among the tested derivatives, compounds 4i and 4t achieved IC50 values of 0.041 ± 0.001 µM and 0.065 ± 0.002 µM, respectively. The mechanism of hMAO-B inhibition by compounds 4i and 4t was studied using Lineweaver–Burk plot. The nature of inhibition was also determined to be non-competitive. Cytotoxicity tests were conducted and compounds 4i and 4t were found to be non-toxic. Molecular docking studies were also carried out for compound 4i, which was found as the most potent agent, within hMAO-B catalytic site

    Synthesis and Antifungal Potential of Some Novel Benzimidazole-1,3,4-Oxadiazole Compounds

    No full text
    Discovery of novel anticandidal agents with clarified mechanisms of action, could be a rationalist approach against diverse pathogenic fungal strains due to the rise of resistance to existing drugs. In support to this hypothesis, in this paper, a series of benzimidazole-oxadiazole compounds were synthesized and subjected to antifungal activity evaluation. In vitro activity assays indicated that some of the compounds exhibited moderate to potent antifungal activities against tested Candida species when compared positive control amphotericin B and ketoconazole. The most active compounds 4h and 4p were evaluated in terms of inhibitory activity upon ergosterol biosynthesis by an LC-MS-MS method and it was determined that they inhibited ergosterol synthesis concentration dependently. Docking studies examining interactions between most active compounds and lanosterol 14-α-demethylase also supported the in vitro results

    Synthesis and Evaluation of New 1,3,4-Thiadiazole Derivatives as Potent Antifungal Agents

    No full text
    With the goal of obtaining a novel bioactive compound with significant antifungal activity, a series of 1,3,4-thiadiazole derivatives (3a⁻3l) were synthesized and characterized. Due to thione-thiol tautomerism in the intermediate compound 2, type of substitution reaction in the final step was determined by two-dimensional (2D) NMR. In vitro antifungal activity of the synthesized compounds was evaluated against eight Candida species. The active compounds 3k and 3l displayed very notable antifungal effects. The probable mechanisms of action of active compounds were investigated using an ergosterol quantification assay. Docking studies on 14-α-sterol demethylase enzyme were also performed to investigate the inhibition potency of compounds on ergosterol biosynthesis. Theoretical absorption, distribution, metabolism, and excretion (ADME) predictions were calculated to seek their drug likeness of final compounds. The results of the antifungal activity test, ergosterol biosynthesis assay, docking study, and ADME predictions indicated that the synthesized compounds are potential antifungal agents, which inhibit ergosterol biosynthesis probably interacting with the fungal 14-α-sterol demethylase
    corecore