2 research outputs found

    Occupational therapy in spinocerebellar ataxia type 3: an open-label trial

    No full text
    Occupational therapy (OT) is a profession concerned with promoting health and well-being through occupation, by enabling handicapped people to participate in the activities of everyday life. OT is part of the clinical rehabilitation of progressive genetic neurodegenerative diseases such as spinocerebellar ataxias; however, its effects have never been determined in these diseases. Our aim was to investigate the effect of OT on both physical disabilities and depressive symptoms of spinocerebellar ataxia type 3 (SCA3) patients. Genomically diagnosed SCA3 patients older than 18 years were invited to participate in the study. Disability, as evaluated by functional independence measurement and Barthel incapacitation score, Hamilton Rating Scale for Depression, and World Health Organization Quality of Life questionnaire (WHOQOL-BREF), was determined at baseline and after 3 and 6 months of treatment. Twenty-six patients agreed to participate in the study. All were treated because OT prevents blinding of a control group. Fifteen sessions of rehabilitative OT were applied over a period of 6 months. Difficult access to food, clothing, personal hygiene, and leisure were some of the main disabilities focused by these patients. After this treatment, disability scores and quality of life were stable, and the Hamilton scores for depression improved. Since no medication was started up to 6 months before or during OT, this improvement was related to our intervention. No association was found between these endpoints and a CAG tract of the MJD1 gene (CAGn), age, age of onset, or neurological scores at baseline (Spearman test). Although the possibly temporary stabilization of the downhill disabilities as an effect of OT remains to be established, its clear effect on depressive symptoms confirms the recommendation of OT to any patient with SCA3 or spinocerebellar ataxia

    Biallelic Variants in the Ectonucleotidase ENTPD1 Cause a Complex Neurodevelopmental Disorder with Intellectual Disability, Distinct White Matter Abnormalities, and Spastic Paraplegia

    No full text
    Objective Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). Methods Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. Results A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. Interpretation The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 202
    corecore