278 research outputs found

    Molecules for the millennium: how will they look? New drug discovery year 2000

    Get PDF
    A new approach to cancer drug discovery targets molecules important in cancer pathogenesis. This approach is thought to be of greater promise than the antiproliferative screens which discovered cytotoxic agents and dominated cancer drug discovery for 60 years. However, one cannot lose sight of the fact that these targets exist in the cellular environment consisting of many additional influences on target function, and that effective drug treatment will take into account drug uptake, metabolism and elimination at the level of the cell as well as the organism. A key goal is to define for the new millennium a path to cancer drug discovery and development which accounts for the cancer cell phenotype in its totality rather than as arising solely from single molecular targets. The US National Cancer Institute maintains a cell-based drug discovery screen which can define a context for drug action in the milieu of more than 300 molecular targets and thousands of gene expression patterns which have been measured in the 60 human tumour cell lines which comprise the screening panel. The challenge of the millennium will be addressed by molecules active against defined targets but with selectivity of action occurring in the milieu of deregulated cancer cell biology in all its aspects. © 2000 Cancer Research Campaign http://www.bjcancer.co

    Phase 1 dose-escalation, pharmacokinetic, and cerebrospinal fluid distribution study of TAK-285, an investigational inhibitor of EGFR and HER2

    Get PDF
    Introduction This phase 1 study assessed safety, maximum tolerated dose (MTD), pharmacokinetics, cerebrospinal fluid (CSF) distribution, and preliminary clinical activity of the receptor tyrosine kinase inhibitor TAK-285. Methods Patients with advanced, histologically confirmed solid tumors and Eastern Cooperative Oncology Group performance status ≤2 received daily oral TAK-285; daily dose was escalated within defined cohorts until MTD and recommended phase 2 dose (RP2D) were determined. Eleven patients were enrolled into an RP2D cohort. Blood samples were collected from all cohorts; CSF was collected at pharmacokinetic steady-state from RP2D patients. Tumor responses were assessed every 8 weeks per Response Evaluation Criteria in Solid Tumors. Results Fifty-four patients were enrolled (median age 60; range, 35–76 years). The most common diagnoses were cancers of the colon (28 %), breast (17 %), and pancreas (9 %). Escalation cohorts evaluated doses from 50 mg daily to 500 mg twice daily; the MTD/RP2D was 400 mg twice daily. Dose-limiting toxicities included diarrhea, hypokalemia, and fatigue. Drug absorption was fast (median time of maximum concentration was 2–3 h), and mean half-life was 9 h. Steady-state average unbound CSF concentration (geometric mean 1.54 [range, 0.51–4.27] ng/mL; n = 5) at the RP2D was below the 50 % inhibitory concentration (9.3 ng/mL) for inhibition of tyrosine kinase activity in cells expressing recombinant HER2. Best response was stable disease (12 weeks of nonprogression) in 13 patients. Conclusions TAK-285 was generally well tolerated at the RP2D. Distribution in human CSF was confirmed, but the free concentration of the drug was below that associated with biologically relevant target inhibition

    Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials

    Get PDF
    An analysis of the activity of compounds tested in pre-clinical in vivo and in vitro assays by the National Cancer Institute's Developmental Therapeutics Program was performed. For 39 agents with both xenograft data and Phase II clinical trials results available, in vivo activity in a particular histology in a tumour model did not closely correlate with activity in the same human cancer histology, casting doubt on the correspondence of the pre-clinical models to clinical results. However, for compounds with in vivo activity in at least one-third of tested xenograft models, there was correlation with ultimate activity in at least some Phase II trials. Thus, an efficient means of predicting activity in vivo models remains desirable for compounds with anti-proliferative activity in vitro. For 564 compounds tested in the hollow fibre assay which were also tested against in vivo tumour models, the likelihood of finding xenograft activity in at least one-third of the in vivo models tested rose with increasing intraperitoneal hollow fibre activity, from 8% for all compounds tested to 20% in agents with evidence of response in more than 6 intraperitoneal fibres (P< 0.0001). Intraperitoneal hollow fibre activity was also found to be a better predictor of xenograft activity than either subcutaneous hollow fibre activity or intraperitoneal plus subcutaneous activity combined. Since hollow fibre activity was a useful indicator of potential in vivo response, correlates with hollow fibre activity were examined for 2304 compounds tested in both the NCI 60 cell line in vitro cancer drug screen and hollow fibre assay. A positive correlation was found for histologic selectivity between in vitro and hollow fibre responses. The most striking correlation was between potency in the 60 cell line screen and hollow fibre activity; 56% of compounds with mean 50% growth inhibition below 10–7.5 M were active in more than 6 intraperitoneal fibres whereas only 4% of compounds with a potency of 10–4 M achieved the same level of hollow fibre activity (P< 0.0001). Structural parameters of the drugs analysed included compound molecular weight and hydrogen-bonding factors, both of which were found to be predictive of hollow fibre activity. © 2001 Cancer Research Campaign www.bjcancer.co

    Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration

    Get PDF
    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life1, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge2 are regulated by the surrounding microenvironment, or niche3. The activation of such stem cells is cyclic, involving periodic -catenin activity4, 5, 6, 7. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug delivery and stem cell engineering studies, because they highlight the acute need to differentiate supportive versus inhibitory regions in the host skin

    A phase II study of cell cycle inhibitor UCN-01 in patients with metastatic melanoma: a California Cancer Consortium trial

    Get PDF
    Background Genetic abnormalities in cell cycle control are common in malignant melanoma. UCN-01 (7-hydroxystaurosporine) is an investigational agent that exhibits antitumor activity by perturbing the cancer cell cycle. A patient with advanced melanoma experienced a partial response in a phase I trial of single agent UCN-01. We sought to determine the activity of UCN-01 against refractory metastatic melanoma in a phase II study. Patients and methods Patients with advanced melanoma received UCN-01 at 90 mg/m2 over 3 h on cycle 1, reduced to 45 mg/m2 over 3 h for subsequent cycles, every 21 days. Primary endpoint was tumor response. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). A two-stage (17 + 16), single arm phase II design was employed. A true response rate of ≥20% (i.e., at least one responder in the first stage, or at least four responders overall) was to be considered promising for further development of UCN-01 in this setting. Results Seventeen patients were accrued in the first stage. One patient was inevaluable for response. Four (24%) patients had stable disease, and 12 (71%) had disease progression. As there were no responders in the first stage, the study was closed to further accrual. Median PFS was 1.3 months (95% CI, 1.2–3.0) while median OS was 7.3 months (95% CI, 3.4–18.4). One-year and two year OS rates were 41% and 12%, respectively. A median of two cycles were delivered (range, 1–18). Grade 3 treatment-related toxicities include hyperglycemia (N = 2), fatigue (N = 1), and diarrhea (N = 1). One patient experienced grade 4 creatinine elevation and grade 4 anemia possibly due to UCN-01. No dose modification was required as these patients had disease progression. Conclusion Although well tolerated, UCN-01 as a single agent did not have sufficient clinical activity to warrant further study in refractory melanoma

    In vitro evaluation of amino acid prodrugs of novel antitumour 2-(4-amino-3-methylphenyl)benzothiazoles

    Get PDF
    Novel 2-(4-aminophenyl)benzothiazoles possess highly selective, potent antitumour properties in vitro and in vivo. They induce and are biotransformed by cytochrome P450 (CYP) 1A1 to putative active as well as inactive metabolites. Metabolic inactivation of the molecule has been thwarted by isosteric replacement of hydrogen with fluorine atoms at positions around the benzothiazole nucleus. The lipophilicity of these compounds presents limitations for drug formulation and bioavailability. To overcome this problem, water soluble prodrugs have been synthesised by conjugation of alanyl- and lysyl-amide hydrochloride salts to the exocyclic primary amine function of 2-(4-aminophenyl)benzothiazoles. The prodrugs retain selectivity with significant in vitro growth inhibitory potency against the same sensitive cell lines as their parent amine, but are inactive against cell lines inherently resistant to 2-(4-aminophenyl)benzothiazoles. Alanyl and lysyl prodrugs rapidly and quantitatively revert to their parent amine in sensitive and insensitive cell lines in vitro. Liberated parent compounds are sequestered and metabolised by sensitive cells only; similarly, CYP1A1 activity and protein expression are selectively induced in sensitive carcinoma cells. Amino acid prodrugs meet the criteria of aqueous solubility, chemical stability and quantitative reversion to parent molecule, and thus are suitable for in vivo preclinical evaluation

    Clinical anticancer drug development: targeting the cyclin-dependent kinases

    Get PDF
    Cell division involves a cyclical biochemical process composed of several step-wise reactions that have to occur once per cell cycle. Dysregulation of cell division is a hallmark of all cancers. Genetic and epigenetic mechanisms frequently result in deranged expression and/or activity of cell-cycle proteins including the cyclins, cyclin-dependent kinases (Cdks), Cdk inhibitors and checkpoint control proteins. The critical nature of these proteins in cell cycling raises hope that targeting them may result in selective cytotoxicity and valuable anticancer activity

    Cellular Growth Kinetics Distinguish a Cyclophilin Inhibitor from an HSP90 Inhibitor as a Selective Inhibitor of Hepatitis C Virus

    Get PDF
    During antiviral drug discovery, it is critical to distinguish molecules that selectively interrupt viral replication from those that reduce virus replication by adversely affecting host cell viability. In this report we investigate the selectivity of inhibitors of the host chaperone proteins cyclophilin A (CypA) and heat-shock protein 90 (HSP90) which have each been reported to inhibit replication of hepatitis C virus (HCV). By comparing the toxicity of the HSP90 inhibitor, 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) to two known cytostatic compounds, colchicine and gemcitabine, we provide evidence that 17-AAG exerts its antiviral effects indirectly through slowing cell growth. In contrast, a cyclophilin inhibitor, cyclosporin A (CsA), exhibited selective antiviral activity without slowing cell proliferation. Furthermore, we observed that 17-AAG had little antiviral effect in a non-dividing cell-culture model of HCV replication, while CsA reduced HCV titer by more than two orders of magnitude in the same model. The assays we describe here are useful for discriminating selective antivirals from compounds that indirectly affect virus replication by reducing host cell viability or slowing cell growth
    • …
    corecore