116 research outputs found

    Altitude Exposure at 1800 m Increases Haemoglobin Mass in Distance Runners

    Get PDF
    The influence of low natural altitudes (\u3c 2000 m) on erythropoietic adaptation is currently unclear, with current recommendations indicating that such low altitudes may be insufficient to stimulate significant increases in haemoglobin mass (Hbmass). As such, the purpose of this study was to determine the influence of 3 weeks of live high, train high exposure (LHTH) at low natural altitude (i.e. 1800 m) on Hbmass, red blood cell count and iron profile. A total of 16 elite or well-trained runners were assigned into either a LHTH (n = 8) or CONTROL (n = 8) group. Venous blood samples were drawn prior to, at 2 weeks and at 3 weeks following exposure. Hbmass was measured in duplicate prior to exposure and at 2 weeks and at 3 weeks following exposure via carbon monoxide rebreathing. The percentage change in Hb mass from baseline was significantly greater in LHTH, when compared with the CONTROL group at 2 (3.1% vs 0.4%; p = 0.01;) and 3 weeks (3.0% vs -1.1%; p \u3c 0.02, respectively) following exposure. Haematocrit was greater in LHTH than CONTROL at 2 (p = 0.01) and 3 weeks (p = 0.04) following exposure. No significant interaction effect was observed for haemoglobin concentration (p = 0.06), serum ferritin (p = 0.43), transferrin (p = 0.52) or reticulocyte percentage (p = 0.16). The results of this study indicate that three week of natural classic (i.e. LHTH) low altitude exposure (1800 m) results in a significant increase in Hbmass of elite distance runners, which is likely due to the continuous exposure to hypoxia

    A self-reported questionnaire for quantifying illness symptoms in elite athletes

    Get PDF
    PURPOSE: To develop and evaluate a questionnaire that quantifies the self-reported frequency, duration and severity of illness symptoms in highly-trained athletes. We examined whether runners had more symptoms than recreationally-active individuals, and whether runners more prone to illness were undertaking more strenuous training programs. METHODS: A daily illness questionnaire was administered for three months during the summer to quantify the type, frequency, duration, and severity of illness symptoms as well as the functional impact on the ability to undertake exercise performance. A total of 35 participants (12 highly-trained runners living in a community setting and 23 recreationally-active medical students) completed the questionnaire. RESULTS: Runners had a similar frequency of illness (2.1 ± 1.2 vs. 1.8 ± 2.3 episodes, mean ± SD, P = 0.58), but substantially longer duration (5.5 ± 9.9 vs 2.8 ± 3.1 days, P < 0.01) and illness load (7.7 ± 16.2 vs 4.5 ± 4.8 units, P = 0.001) than age- and sex-matched recreationally-active individuals respectively. Runners more prone to illness symptoms had marginally higher training loads. CONCLUSIONS: The athlete illness questionnaire is useful for quantifying the pattern of self-reported symptoms of illness in field settings. Highly-trained runners experience longer episodes of illness with a greater impact on daily activity than recreationally-active individuals

    Neuromuscular control and running economy is preserved in elite international triathletes after cycling

    Full text link
    Running is the most important discipline for Olympic triathlon success. However, cycling impairs running muscle recruitment and performance in some highly trained triathletes; though it is not known if this occurs in elite international triathletes. The purpose of this study was to investigate the effect of cycling in two different protocols on running economy and neuromuscular control in elite international triathletes. Muscle recruitment and sagittal plane joint angles of the left lower extremity and running economy were compared between control (no preceding cycle) and transition (preceded by cycling) runs for two different cycle protocols (20-minute low-intensity and 50-minute high-intensity cycles) in seven elite international triathletes. Muscle recruitment and joint angles were not different between control and transition runs for either cycle protocols. Running economy was also not different between control and transition runs for the ow-intensity (62.4 ^ 4.5 vs. 62.1 ^ 4.0 ml/min/kg, p . 0.05) and high-intensity (63.4 ^ 3.5 vs. 63.3 ^ 4.3 ml/min/kg, p . 0.05) cycle protocols. The results of this study demonstrate that both low- and high-intensity cycles do not adversely influence neuromuscular control and running economy in elite international triathletes.<br /

    Effect of environmental and feedback interventions on pacing profiles in cycling: a meta-analysis

    Get PDF
    Insearchoftheiroptimalperformanceathleteswillaltertheirpacingstrategyaccordingtointrinsicandextrinsicphysiological,psychologicalandenvironmentalfactors.However,theeffectofsomeofthesevariablesonpacingandexerciseperformanceremainssomewhatunclear.Therefore,theaimofthismeta-analysiswastoprovideanoverviewastohowmanipulationofdifferentextrinsicfactorsaffectspacingstrategyandexerciseperformance.Onlyself-pacedexercisestudiesthatprovidedcontrolandinterventiongroup(s),reportedtrialvarianceforpoweroutput,disclosedthetypeoffeedbackreceivedorwithheld,andwheretime-trialpoweroutputdatacouldbesegmentedintostart,middleandendsections;wereincludedinthemeta-analysis.Studieswithsimilarthemesweregroupedtogethertodeterminethemeandifference(MD)with95%confidenceintervals(CIs)betweencontrolandinterventiontrialsfor:hypoxia,hyperoxia,heat-stress,pre-cooling,andvariousformsoffeedback.Atotalof26studieswithcyclingastheexercisemodalitywereincludedinthemeta-analysis.Ofthese,fourstudiesmanipulatedoxygenavailability,elevenmanipulatedheat-stress,fourimplementedpre-coolinginterventionsandsevenstudiesmanipulatedvariousformsoffeedback.Meanpoweroutput(MPO)wassignificantlyreducedinthemiddleandendsections(p 0.05).NegativefeedbackimprovedoveralltrialMPOandMPOinthemiddlesectionoftrials(p 0.05).Theavailabledatasuggestsexerciseregulationinhypoxiaandheat-stressisdelayedinthestartsectionoftrials,beforesignificantreductionsinMPOoccurinthemiddleandendofthetrial.Additionally,negativefeedbackinvolvingperformancedeceptionmayaffordanupwardshiftinMPOinthemiddlesectionofthetrialimprovingoverallperformance.Finally,performanceimprovementscanberetainedwhenparticipantsareinformedofthedeception

    Four Weeks of IV Iron Supplementation Reduces Perceived Fatigue and Mood Disturbance in Distance Runners

    Get PDF
    To determine the effect of intravenous iron supplementation on performance, fatigue and overall mood in runners without clinical iron deficiency.Fourteen distance runners with serum ferritin 30-100 µg · L(-1) were randomly assigned to receive three blinded injections of intravenous ferric-carboxymaltose (2 ml, 100 mg, IRON) or normal saline (PLACEBO) over four weeks (weeks 0, 2, 4). Athletes performed a 3,000 m time trial and 10 × 400 m monitored training session on consecutive days at week 0 and again following each injection. Hemoglobin mass (Hbmass) was assessed via carbon monoxide rebreathing at weeks 0 and 6. Fatigue and mood were determined bi-weekly until week 6 via Total Fatigue Score (TFS) and Total Mood Disturbance (TMD) using the Brief Fatigue Inventory and Brunel Mood Scale. Data were analyzed using magnitude-based inferences, based on the unequal variances t-statistic and Cohen's Effect sizes (ES).Serum ferritin increased in IRON only (Week 0: 62.8 ± 21.9, Week 4: 128.1 ± 46.6 µg · L(-1); p = 0.002) and remained elevated two weeks after the final injection (127.0 ± 66.3 µg · L(-1), p = 0.01), without significant changes in Hbmass. Supplementation had a moderate effect on TMD of IRON (ES -0.77) with scores at week 6 lower than PLACEBO (ES -1.58, p = 0.02). Similarly, at week 6, TFS was significantly improved in IRON vs. PLACEBO (ES -1.54, p = 0.05). There were no significant improvements in 3,000 m time in either group (Week 0 vs. Week 4; Iron: 625.6 ± 55.5 s vs. 625.4 ± 52.7 s; PLACEBO: 624.8 ± 47.2 s vs. 639.1 ± 59.7 s); but IRON reduced their average time for the 10 × 400 m training session at week 2 (Week 0: 78.0 ± 6.6 s, Week 2: 77.2 ± 6.3; ES-0.20, p = 0.004).During 6 weeks of training, intravenous iron supplementation improved perceived fatigue and mood of trained athletes with no clinical iron deficiency, without concurrent improvements in oxygen transport capacity or performance

    Short-Term Very High Carbohydrate Diet and Gut-Training Have Minor Effects on Gastrointestinal Status and Performance in Highly Trained Endurance Athletes

    Get PDF
    We implemented a multi-pronged strategy (MAX) involving chronic (2 weeks high carbohydrate [CHO] diet + gut-training) and acute (CHO loading + 90 g·h(−1) CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON) in two groups of athletes. Nineteen elite male race walkers (MAX: 9; CON:10) undertook a 26 km race-walking session before and after the respective interventions to investigate gastrointestinal function (absorption capacity), integrity (epithelial injury), and symptoms (GIS). We observed considerable individual variability in responses, resulting in a statistically significant (p < 0.001) yet likely clinically insignificant increase (Δ 736 pg·mL(−1)) in I-FABP after exercise across all trials, with no significant differences in breath H(2) across exercise (p = 0.970). MAX was associated with increased GIS in the second half of the exercise, especially in upper GIS (p < 0.01). Eighteen highly trained male and female distance runners (MAX: 10; CON: 8) then completed a 35 km run (28 km steady-state + 7 km time-trial) supported by either a slightly modified MAX or CON strategy. Inter-individual variability was observed, without major differences in epithelial cell intestinal fatty acid binding protein (I-FABP) or GIS, due to exercise, trial, or group, despite the 3-fold increase in exercise CHO intake in MAX post-intervention. The tight-junction (claudin-3) response decreased in both groups from pre- to post-intervention. Groups achieved a similar performance improvement from pre- to post-intervention (CON = 39 s [95 CI 15–63 s]; MAX = 36 s [13–59 s]; p = 0.002). Although this suggests that further increases in CHO availability above current guidelines do not confer additional advantages, limitations in our study execution (e.g., confounding loss of BM in several individuals despite a live-in training camp environment and significant increases in aerobic capacity due to intensified training) may have masked small differences. Therefore, athletes should meet the minimum CHO guidelines for training and competition goals, noting that, with practice, increased CHO intake can be tolerated, and may contribute to performance outcomes

    Short-term very high carbohydrate diet and gut-training have minor effects on gastrointestinal status and performance in highly trained endurance athletes

    Get PDF
    We implemented a multi-pronged strategy (MAX) involving chronic (2 weeks high carbohydrate [CHO] diet + gut-training) and acute (CHO loading + 90 g·h−1 CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON) in two groups of athletes. Nineteen elite male race walkers (MAX: 9; CON:10) undertook a 26 km race-walking session before and after the respective interventions to investigate gastrointestinal function (absorption capacity), integrity (epithelial injury), and symptoms (GIS). We observed considerable individual variability in responses, resulting in a statistically significant (p < 0.001) yet likely clinically insignificant increase (Δ 736 pg·mL−1) in I-FABP after exercise across all trials, with no significant differences in breath H2 across exercise (p = 0.970). MAX was associated with increased GIS in the second half of the exercise, especially in upper GIS (p < 0.01). Eighteen highly trained male and female distance runners (MAX: 10; CON: 8) then completed a 35 km run (28 km steady-state + 7 km time-trial) supported by either a slightly modified MAX or CON strategy. Inter-individual variability was observed, without major differences in epithelial cell intestinal fatty acid binding protein (I-FABP) or GIS, due to exercise, trial, or group, despite the 3-fold increase in exercise CHO intake in MAX post-intervention. The tight-junction (claudin-3) response decreased in both groups from pre- to post-intervention. Groups achieved a similar performance improvement from pre- to post-intervention (CON = 39 s [95 CI 15–63 s]; MAX = 36 s [13–59 s]; p = 0.002). Although this suggests that further increases in CHO availability above current guidelines do not confer additional advantages, limitations in our study execution (e.g., confounding loss of BM in several individuals despite a live-in training camp environment and significant increases in aerobic capacity due to intensified training) may have masked small differences. Therefore, athletes should meet the minimum CHO guidelines for training and competition goals, noting that, with practice, increased CHO intake can be tolerated, and may contribute to performance outcomes

    Wastewater surveillance for bacterial targets: current challenges and future goals

    Get PDF
    Wastewater-based epidemiology (WBE) expanded rapidly in response to the COVID-19 pandemic. As the public health emergency has ended, researchers and practitioners are looking to shift the focus of existing wastewater surveillance programs to other targets, including bacteria. Bacterial targets may pose some unique challenges for WBE applications. To explore the current state of the field, the National Science Foundation-funded Research Coordination Network (RCN) on Wastewater Based Epidemiology for SARS-CoV-2 and Emerging Public Health Threats held a workshop in April 2023 to discuss the challenges and needs for wastewater bacterial surveillance. The targets and methods used in existing programs were diverse, with twelve differentdifferentdifferenttargets and nine different methods listed. Discussions during the workshop highlighted the challenges in adapting existing programs and identified research gaps in four key areas: choosing new targets, relating bacterial wastewater data to human disease incidence and prevalence, developing methods, and normalizing results. To help with these challenges and research gaps, the authors identified steps the larger community can take to improve bacteria wastewater surveillance. This includes developing data reporting standards and method optimization and validation for bacterial programs. Additionally, more work is needed to understand shedding patterns for potential bacterial targets to better relate wastewater data to human infections. Wastewater surveillance for bacteria can help provide insight into the underlying prevalence in communities, but much work is needed to establish these methods
    • …
    corecore