1,203 research outputs found

    Symmetry groupoids and patterns of synchrony in coupled cell networks

    Get PDF
    A coupled cell system is a network of dynamical systems, or “cells,” coupled together. Such systems can be represented schematically by a directed graph whose nodes correspond to cells and whose edges represent couplings. A symmetry of a coupled cell system is a permutation of the cells that preserves all internal dynamics and all couplings. Symmetry can lead to patterns of synchronized cells, rotating waves, multirhythms, and synchronized chaos. We ask whether symmetry is the only mechanism that can create such states in a coupled cell system and show that it is not. The key idea is to replace the symmetry group by the symmetry groupoid, which encodes information about the input sets of cells. (The input set of a cell consists of that cell and all cells connected to that cell.) The admissible vector fields for a given graph—the dynamical systems with the corresponding internal dynamics and couplings—are precisely those that are equivariant under the symmetry groupoid. A pattern of synchrony is “robust” if it arises for all admissible vector fields. The first main result shows that robust patterns of synchrony (invariance of “polydiagonal” subspaces under all admissible vector fields) are equivalent to the combinatorial condition that an equivalence relation on cells is “balanced.” The second main result shows that admissible vector fields restricted to polydiagonal subspaces are themselves admissible vector fields for a new coupled cell network, the “quotient network.” The existence of quotient networks has surprising implications for synchronous dynamics in coupled cell systems

    Ultrahigh and persistent optical depths of caesium in Kagom\'e-type hollow-core photonic crystal fibres

    Full text link
    Alkali-filled hollow-core fibres are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption. However, until now these large optical depths could only be generated for seconds at most once per day, severely limiting the practicality of the technology. Here we report the generation of highest observed transient (>105>10^5 for up to a minute) and highest observed persistent (>2000>2000 for hours) optical depths of alkali vapours in a light-guiding geometry to date, using a caesium-filled Kagom\'e-type hollow-core photonic crystal fibre. Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories.Comment: Author Accepted versio

    The Faint Sub-mm Galaxy Population: HST Morphologies and Colors

    Full text link
    We present optical morphologies obtained from deep HST and ground-based images for galaxies selected from the first sub-millimeter survey of the distant Universe. Our sample comprises galaxies detected in deep 850-micron continuum maps of seven massive clusters, obtained using SCUBA, the new bolometer camera on the JCMT. The survey covers a total area of 0.01 square degrees to 1-sigma noise levels of about 2 mJy/beam. We detect a total of 25 sources at 850 microns, of which 17 and 10 are brighter than the respective 50% and 80% completeness limits. Optical counterparts are identified for 14 of the 16 sources in the f(50%) sample and for 9 of the 10 sources in the f(80%) sample that lie within our optical fields. The morphologies of those galaxies for which we have HST imaging fall into three broad categories: faint disturbed galaxies and interactions; faint galaxies too compact to classify reliably; and dusty, star-forming galaxies at intermediate redshifts. The disturbed and interacting galaxies constitute the largest class, which suggests that interactions remain an important mechanism for triggering star formation and the formation of ultraluminous galaxies in the distant Universe. The faint, compact galaxies may represent a later evolutionary stage in these mergers, or more centrally-concentrated starbursts. It is likely that some of these will host AGN. Analysis of the colors of our sample allow us to estimate a crude redshift distribution: >75% have z50% lie at z<4.5, suggesting that the luminous sub-mm population is coeval with the more modestly star-forming galaxies selected by UV/optical surveys of the distant Universe. This imposes important constraints on models of galaxy formation and evolution.Comment: 5 pages, LaTeX, 2 figures, uses emulateapj.sty, submitted to ApJ

    Little evidence for association between the TGFBR1*6A variant and colorectal cancer: a family-based association study on non-syndromic family members from Australia and Spain

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.Genome-wide linkage studies have identified the 9q22 chromosomal region as linked with colorectal cancer (CRC) predisposition. A candidate gene in this region is transforming growth factor β receptor 1 (TGFBR1). Investigation of TGFBR1 has focused on the common genetic variant rs11466445, a short exonic deletion of nine base pairs which results in truncation of a stretch of nine alanine residues to six alanine residues in the gene product. While the six alanine (*6A) allele has been reported to be associated with increased risk of CRC in some population based study groups this association remains the subject of robust debate. To date, reports have been limited to population-based case–control association studies, or case–control studies of CRC families selecting one affected individual per family. No study has yet taken advantage of all the genetic information provided by multiplex CRC families

    Little evidence for association between the TGFBR1*6A variant and colorectal cancer: a family-based association study on non-syndromic family members from Australia and Spain.

    Get PDF
    Genome-wide linkage studies have identified the 9q22 chromosomal region as linked with colorectal cancer (CRC) predisposition. A candidate gene in this region is transforming growth factor beta receptor 1 (TGFBR1). Investigation of TGFBR1 has focused on the common genetic variant rs11466445, a short exonic deletion of nine base pairs which results in truncation of a stretch of nine alanine residues to six alanine residues in the gene product. While the six alanine (*6A) allele has been reported to be associated with increased risk of CRC in some population based study groups this association remains the subject of robust debate. To date, reports have been limited to population-based case-control association studies, or case-control studies of CRC families selecting one affected individual per family. No study has yet taken advantage of all the genetic information provided by multiplex CRC families. Methods: We have tested for an association between rs11466445 and risk of CRC using several family-based statistical tests in a new study group comprising members of non-syndromic high risk CRC families sourced from three familial cancer centres, two in Australia and one in Spain. Results: We report a finding of a nominally significant result using the pedigree-based association test approach (PBAT; p = 0.028), while other family-based tests were non-significant, but with a p-value < 0.10 in each instance. These other tests included the Generalised Disequilibrium Test (GDT; p = 0.085), parent of origin GDT Generalised Disequilibrium Test (GDT-PO; p = 0.081) and empirical Family-Based Association Test (FBAT; p = 0.096, additive model). Related-person case-control testing using the 'More Powerful' Quasi-Likelihood Score Test did not provide any evidence for association (M-QL5; p = 0.41). Conclusions: After conservatively taking into account considerations for multiple hypothesis testing, we find little evidence for an association between the TGFBR1*6A allele and CRC risk in these families. The weak support for an increase in risk in CRC predisposed families is in agreement with recent meta-analyses of case-control studies, which estimate only a modest increase in sporadic CRC risk among 6*A allele carriers

    Constrained by managerialism : caring as participation in the voluntary social services

    Get PDF
    The data in this study show that care is a connective process, underlying and motivating participation and as a force that compels involvement in the lives of others, care is at least a micro-participative process. Care or affinity not only persisted in the face of opposition, but it was also used by workers as a counter discourse and set of practices with which to resist the erosion of worker participation and open up less autonomized practices and ways of connecting with fellow staff, clients and the communities they served. The data suggest that while managerialism and taylorised practice models may remove or reduce opportunities for worker participation, care is a theme or storyline that gave workers other ways to understand their work and why they did it, as well as ways they were prepared to resist managerial priorities and directives, including the erosion of various kinds of direct and indirect participation. The degree of resistance possible, even in the highly technocratic worksite in Australia, shows that cracks and fissures exist within managerialism

    Age-Dependent Changes in the Proteome Following Complete Spinal Cord Transection in a Postnatal South American Opossum (Monodelphis domestica)

    Get PDF
    Recovery from severe spinal injury in adults is limited, compared to immature animals who demonstrate some capacity for repair. Using laboratory opossums (Monodelphis domestica), the aim was to compare proteomic responses to injury at two ages: one when there is axonal growth across the lesion and substantial behavioural recovery and one when no axonal growth occurs. Anaesthetized pups at postnatal day (P) 7 or P28 were subjected to complete transection of the spinal cord at thoracic level T10. Cords were collected 1 or 7 days after injury and from age-matched controls. Proteins were separated based on isoelectric point and subunit molecular weight; those whose expression levels changed following injury were identified by densitometry and analysed by mass spectrometry. Fifty-six unique proteins were identified as differentially regulated in response to spinal transection at both ages combined. More than 50% were cytoplasmic and 70% belonged to families of proteins with characteristic binding properties. Proteins were assigned to groups by biological function including regulation (40%), metabolism (26%), inflammation (19%) and structure (15%). More changes were detected at one than seven days after injury at both ages. Seven identified proteins: 14-3-3 epsilon, 14-3-3 gamma, cofilin, alpha enolase, heart fatty acid binding protein (FABP3), brain fatty acid binding protein (FABP7) and ubiquitin demonstrated age-related differential expression and were analysed by qRT-PCR. Changes in mRNA levels for FABP3 at P7+1day and ubiquitin at P28+1day were statistically significant. Immunocytochemical staining showed differences in ubiquitin localization in younger compared to older cords and an increase in oligodendrocyte and neuroglia immunostaining following injury at P28. Western blot analysis supported proteomic results for ubiquitin and 14-3-3 proteins. Data obtained at the two ages demonstrated changes in response to injury, compared to controls, that were different for different functional protein classes. Some may provide targets for novel drug or gene therapies

    SEAmester – South Africa’s first class afloat

    Get PDF
    publisher versionFrom Introduction: Marine science is a highly competitive environment. The need to improve the cohort of South African postgraduates, who would be recognised both nationally and internationally for their scientific excellence, is crucial. It is possible to attract students early on in their careers to this discipline via cutting-edge science, technology and unique field experiences. Through the engagement of students with real-life experiences such as SEAmester, universities supporting marine science postgraduate degree programmes can attract a sustainable throughput of numerically proficient students. By achieving a more quantitative and experienced input into our postgraduate degree programmes, we will, as a scientific community, greatly improve our long-term capabilities to accurately measure, model and predict the impacts of current climate change scenarios. The short-term goal is to attract and establish a cohort of proficient marine and atmospheric science graduates who will contribute to filling the capacity needs of South African marine science as a whole. The SEAmester programme, by involving researchers from across all the relevant disciplines and tertiary institutions, provides an opportunity to build a network of collaborative teaching within the marine field. In doing so, these researchers will foster and strengthen new and current collaborations between historically white and black universities (Figure 1). The long-term objective of SEAmester is to build critical mass within the marine sciences to ensure sustained growth of human capacity in marine science in South Africa – aligning closely with the current DST Research and Development strategies and the Operation Phakisa Oceans Economy initiative

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Clinically-relevant rapamycin treatment regimens enhance CD8+ effector memory T cell function in the skin and allow their infiltration into cutaneous squamous cell carcinoma

    Get PDF
    Patients receiving immunosuppressive drugs to prevent organ transplant rejection exhibit a greatly increased risk of developing cutaneous squamous cell carcinoma (SCC). However, not all immunosuppressive drugs confer the same risk. Randomised, controlled trials demonstrate that switching renal transplant recipients receiving calcineurin inhibitor-based therapies to mammalian target of rapamycin (mTOR) inhibitors results in a reduced incidence of de novo SSC formation, and can even result in the regression of pre-existing premalignant lesions. However, the contribution played by residual immune function in this setting is unclear. We examined the hypotheses that mTOR inhibitors promote the enhanced differentiation and function of CD8 memory T cells in the skin. Here, we demonstrate that the long-term oral administration of rapamycin to achieve clinically-relevant whole blood drug target thresholds, creates a “low rapamycin dose” environment in the skin. While both rapamycin and the calcineurin inhibitor tacrolimus elongated the survival of OVA-expressing skin grafts, and inhibited short-term antigen-specific CD8 T cell responses, rapamycin but not tacrolimus permitted the statistically significant infiltration of CD8 effector memory T cells into UV-induced SCC lesions. Furthermore, rapamycin uniquely enhanced the number and function of CD8 effector and central memory T cells in a model of long-term contact hypersensitivity provided that rapamycin was present during the antigen sensitization phase. Thus, our findings suggest that patients switched to mTOR inhibitor regimens likely experience enhanced CD8 memory T cell function to new antigen-challenges in their skin, which could contribute to their lower risk of de novo SSC formation and regression of pre-existing premalignant lesions
    corecore