1,388 research outputs found

    Recent Trends in United Kingdom Anti-Avoidance Law

    Get PDF

    Recent Trends in United Kingdom Anti-Avoidance Law

    Get PDF

    Raman Quantum Memory with Built-In Suppression of Four-wave Mixing Noise

    Full text link
    Quantum memories are essential for large-scale quantum information networks. Along with high efficiency, storage lifetime and optical bandwidth, it is critical that the memory add negligible noise to the recalled signal. A common source of noise in optical quantum memories is spontaneous four-wave mixing. We develop and implement a technically simple scheme to suppress this noise mechanism by means of quantum interference. Using this scheme with a Raman memory in warm atomic vapour we demonstrate over an order of magnitude improvement in noise performance. Furthermore we demonstrate a method to quantify the remaining noise contributions and present a route to enable further noise suppression. Our scheme opens the way to quantum demonstrations using a broadband memory, significantly advancing the search for scalable quantum photonic networks.Comment: 6 pages, 5 figures plus Supplementary Materia

    Experimental demonstration of quantum effects in the operation of microscopic heat engines

    Full text link
    The heat engine, a machine that extracts useful work from thermal sources, is one of the basic theoretical constructs and fundamental applications of classical thermodynamics. The classical description of a heat engine does not include coherence in its microscopic degrees of freedom. By contrast, a quantum heat engine might possess coherence between its internal states. Although the Carnot efficiency cannot be surpassed, and coherence can be performance degrading in certain conditions, it was recently predicted that even when using only thermal resources, internal coherence can enable a quantum heat engine to produce more power than any classical heat engine using the same resources. Such a power boost therefore constitutes a quantum thermodynamic signature. It has also been shown that the presence of coherence results in the thermodynamic equivalence of different quantum heat engine types, an effect with no classical counterpart. Microscopic heat machines have been recently implemented with trapped ions, and proposals for heat machines using superconducting circuits and optomechanics have been made. When operated with standard thermal baths, however, the machines implemented so far have not demonstrated any inherently quantum feature in their thermodynamic quantities. Here we implement two types of quantum heat engines by use of an ensemble of nitrogen-vacancy centres in diamond, and experimentally demonstrate both the coherence power boost and the equivalence of different heat-engine types. This constitutes the first observation of quantum thermodynamic signatures in heat machines

    Ultrahigh and persistent optical depths of caesium in Kagom\'e-type hollow-core photonic crystal fibres

    Full text link
    Alkali-filled hollow-core fibres are a promising medium for investigating light-matter interactions, especially at the single-photon level, due to the tight confinement of light and high optical depths achievable by light-induced atomic desorption. However, until now these large optical depths could only be generated for seconds at most once per day, severely limiting the practicality of the technology. Here we report the generation of highest observed transient (>105>10^5 for up to a minute) and highest observed persistent (>2000>2000 for hours) optical depths of alkali vapours in a light-guiding geometry to date, using a caesium-filled Kagom\'e-type hollow-core photonic crystal fibre. Our results pave the way to light-matter interaction experiments in confined geometries requiring long operation times and large atomic number densities, such as generation of single-photon-level nonlinearities and development of single photon quantum memories.Comment: Author Accepted versio

    Flow impacts on estuarine finfish fisheries of the Gulf of Carpentaria

    Get PDF
    The estuaries of Australia s tropical rivers support commercial fisheries for finfish and shellfish valued at over $220 million per annum. There are also significant tourism-related and local recreational and indigenous fisheries for icon species such as barramundi. Development of water resources in Australia's Tropical Rivers region is being considered for the Flinders, Mitchell, McArthur, Roper, Daly and Victoria catchments. Greater knowledge of the freshwater requirements of tropical aquatic ecosystems, including estuaries is crucial, so that the communities of catchments where water resource development occurs can be assured that the downstream effects of such development are considered and managed based on the best available knowledge

    Generalized substitution of isoencoding codons shortens the duration of papillomavirus L1 protein expression in transiently gene-transfected keratinocytes due to cell differentiation

    Get PDF
    Recently we reported that gene codon composition determines differentiation-dependent expression of the PV L1 genes in mouse primary keratinocytes (KCs) in vitro and in vivo (Zhao et al. 2005, Mol. Cell Biol. 25:8643–8655). Here, we investigated whether generalized substitution of isoencoding codons affects the duration of expression of PV L1 genes in mouse and human KCs in day 1 culture transiently transfected with native (Nat) and codon modified (Mod) L1 genes. Following transient transfection, KC continuously transcribed both Nat and Mod PV L1 genes for at least 12 days, with the levels of L1 mRNAs from the Mod L1 genes significantly higher than those from the Nat L1 genes. However, continuous L1 protein expression at day 9 post-transfection was observed for both mouse and human KCs transfected with the Nat L1 genes only. Further, aa-tRNAs prepared from D8 KC cultures enhanced translation of two PV Nat L1 DNAs in RRL lysate and PV Nat L1 mRNAs in D0 cell-free lysate, whereas aa-tRNAs from D0 KCs enhanced translation of PV Mod L1 mRNAs in D8 cell-free lysate. It appears that aa-tRNAs in less-differentiated and differentiated KCs differentially match the PV Nat and Mod L1 mRNAs to regulate their translations in vitro

    The Faint Sub-mm Galaxy Population: HST Morphologies and Colors

    Full text link
    We present optical morphologies obtained from deep HST and ground-based images for galaxies selected from the first sub-millimeter survey of the distant Universe. Our sample comprises galaxies detected in deep 850-micron continuum maps of seven massive clusters, obtained using SCUBA, the new bolometer camera on the JCMT. The survey covers a total area of 0.01 square degrees to 1-sigma noise levels of about 2 mJy/beam. We detect a total of 25 sources at 850 microns, of which 17 and 10 are brighter than the respective 50% and 80% completeness limits. Optical counterparts are identified for 14 of the 16 sources in the f(50%) sample and for 9 of the 10 sources in the f(80%) sample that lie within our optical fields. The morphologies of those galaxies for which we have HST imaging fall into three broad categories: faint disturbed galaxies and interactions; faint galaxies too compact to classify reliably; and dusty, star-forming galaxies at intermediate redshifts. The disturbed and interacting galaxies constitute the largest class, which suggests that interactions remain an important mechanism for triggering star formation and the formation of ultraluminous galaxies in the distant Universe. The faint, compact galaxies may represent a later evolutionary stage in these mergers, or more centrally-concentrated starbursts. It is likely that some of these will host AGN. Analysis of the colors of our sample allow us to estimate a crude redshift distribution: >75% have z50% lie at z<4.5, suggesting that the luminous sub-mm population is coeval with the more modestly star-forming galaxies selected by UV/optical surveys of the distant Universe. This imposes important constraints on models of galaxy formation and evolution.Comment: 5 pages, LaTeX, 2 figures, uses emulateapj.sty, submitted to ApJ

    Guidance for laboratories performing molecular pathology for cancer patients

    Get PDF
    Molecular testing is becoming an important part of the diagnosis of any patient with cancer. The challenge to laboratories is to meet this need, using reliable methods and processes to ensure that patients receive a timely and accurate report on which their treatment will be based. The aim of this paper is to provide minimum requirements for the management of molecular pathology laboratories. This general guidance should be augmented by the specific guidance available for different tumour types and tests. Preanalytical considerations are important, and careful consideration of the way in which specimens are obtained and reach the laboratory is necessary. Sample receipt and handling follow standard operating procedures, but some alterations may be necessary if molecular testing is to be performed, for instance to control tissue fixation. DNA and RNA extraction can be standardised and should be checked for quality and quantity of output on a regular basis. The choice of analytical method(s) depends on clinical requirements, desired turnaround time, and expertise available. Internal quality control, regular internal audit of the whole testing process, laboratory accreditation, and continual participation in external quality assessment schemes are prerequisites for delivery of a reliable service. A molecular pathology report should accurately convey the information the clinician needs to treat the patient with sufficient information to allow for correct interpretation of the result. Molecular pathology is developing rapidly, and further detailed evidence-based recommendations are required for many of the topics covered here

    Classification of Generalized Symmetries for the Vacuum Einstein Equations

    Full text link
    A generalized symmetry of a system of differential equations is an infinitesimal transformation depending locally upon the fields and their derivatives which carries solutions to solutions. We classify all generalized symmetries of the vacuum Einstein equations in four spacetime dimensions. To begin, we analyze symmetries that can be built from the metric, curvature, and covariant derivatives of the curvature to any order; these are called natural symmetries and are globally defined on any spacetime manifold. We next classify first-order generalized symmetries, that is, symmetries that depend on the metric and its first derivatives. Finally, using results from the classification of natural symmetries, we reduce the classification of all higher-order generalized symmetries to the first-order case. In each case we find that the generalized symmetries are infinitesimal generalized diffeomorphisms and constant metric scalings. There are no non-trivial conservation laws associated with these symmetries. A novel feature of our analysis is the use of a fundamental set of spinorial coordinates on the infinite jet space of Ricci-flat metrics, which are derived from Penrose's ``exact set of fields'' for the vacuum equations.Comment: 57 pages, plain Te
    • …
    corecore