153 research outputs found

    RDB2RDF: Incorporating Domain Semantics in Structured Data

    Get PDF

    Sensor Networks Survey

    Get PDF

    Semantic Provenance for eScience: Managing the Deluge of Scientific Data

    No full text

    A Simplified Crossing Fiber Model in Diffusion Weighted Imaging

    Get PDF
    Diffusion MRI (dMRI) is a vital source of imaging data for identifying anatomical connections in the living human brain that form the substrate for information transfer between brain regions. dMRI can thus play a central role toward our understanding of brain function. The quantitative modeling and analysis of dMRI data deduces the features of neural fibers at the voxel level, such as direction and density. The modeling methods that have been developed range from deterministic to probabilistic approaches. Currently, the Ball-and-Stick model serves as a widely implemented probabilistic approach in the tractography toolbox of the popular FSL software package and FreeSurfer/TRACULA software package. However, estimation of the features of neural fibers is complex under the scenario of two crossing neural fibers, which occurs in a sizeable proportion of voxels within the brain. A Bayesian non-linear regression is adopted, comprised of a mixture of multiple non-linear components. Such models can pose a difficult statistical estimation problem computationally. To make the approach of Ball-and-Stick model more feasible and accurate, we propose a simplified version of Ball-and-Stick model that reduces parameter space dimensionality. This simplified model is vastly more efficient in the terms of computation time required in estimating parameters pertaining to two crossing neural fibers through Bayesian simulation approaches. Moreover, the performance of this new model is comparable or better in terms of bias and estimation variance as compared to existing models

    \u3cem\u3eJanus\u3c/em\u3e: From Workflows to Semantic Provenance and Linked Open Data

    Get PDF
    Data provenance graphs are form of metadata that can be used to establish a variety of properties of data products that undergo sequences of transformations, typically specified as workflows. Their usefulness for answering user provenance queries is limited, however, unless the graphs are enhanced with domain-specific annotations. In this paper we propose a model and architecture for semantic, domain-aware provenance, and demonstrate its usefulness in answering typical user queries. Furthermore, we discuss the additional benefits and the technical implications of publishing provenance graphs as a form of Linked Data. A prototype implementation of the model is available for data produced by the Taverna workflow system

    GLYDE - An Expressive XML Standard for the Representation of Glycan

    Get PDF
    The amount of glycomics data being generated is rapidly increasing as a result of improvements in analytical and computational methods. Correlation and analysis of this large, distributed data set requires an extensible and flexible representational standard that is also ‘understood’ by a wide range of software applications. An XML-based data representation standard that faithfully captures essential structural details of a glycan moiety along with additional information (such as data provenance) to aid the interpretation and usage of glycan data, will facilitate the exchange of glycomics data across the scientific community. To meet this need, we introduce GLYcan Data Exchange (GLYDE) standard as an XML-based representation format to enable interoperability and exchange of glycomics data. An online tool (http://128.192.9.86/stargate/formatIndex.jsp) for the conversion of other representations to GLYDE format has been developed

    Ontology-Based Feature Engineering in Machine Learning Workflows for Heterogeneous Epilepsy Patient Records

    Get PDF
    Biomedical ontologies are widely used to harmonize heterogeneous data and integrate large volumes of clinical data from multiple sources. This study analyzed the utility of ontologies beyond their traditional roles, that is, in addressing a challenging and currently underserved field of feature engineering in machine learning workflows. Machine learning workflows are being increasingly used to analyze medical records with heterogeneous phenotypic, genotypic, and related medical terms to improve patient care. We performed a retrospective study using neuropathology reports from the German Neuropathology Reference Center for Epilepsy Surgery at Erlangen, Germany. This cohort included 312 patients who underwent epilepsy surgery and were labeled with one or more diagnoses, including dual pathology, hippocampal sclerosis, malformation of cortical dysplasia, tumor, encephalitis, and gliosis. We modeled the diagnosis terms together with their microscopy, immunohistochemistry, anatomy, etiologies, and imaging findings using the description logic-based Web Ontology Language (OWL) in the Epilepsy and Seizure Ontology (EpSO). Three tree-based machine learning models were used to classify the neuropathology reports into one or more diagnosis classes with and without ontology-based feature engineering. We used five-fold cross validation to avoid overfitting with a fixed number of repetitions while leaving out one subset of data for testing, and we used recall, balanced accuracy, and hamming loss as performance metrics for the multi-label classification task. The epilepsy ontology-based feature engineering approach improved the performance of all the three learning models with an improvement of 35.7%, 54.5%, and 33.3% in logistics regression, random forest, and gradient tree boosting models respectively. The run time performance of all three models improved significantly with ontology-based feature engineering with gradient tree boosting model showing a 93.8% reduction in the time required for training and testing of the model. Although, all three models showed an overall improved performance across the three-performance metrics using ontology-based feature engineering, the rate of improvement was not consistent across all input features. To analyze this variation in performance, we computed feature importance scores and found that microscopy had the highest importance score across the three models, followed by imaging, immunohistochemistry, and anatomy in a decreasing order of importance scores. This study showed that ontologies have an important role in feature engineering to make heterogeneous clinical data accessible to machine learning models and also improve the performance of machine learning models in multilabel multiclass classification tasks

    The Ontology for Parasite Lifecycle (OPL): towards a consistent vocabulary of lifecycle stages in parasitic organisms.

    Get PDF
    BACKGROUND: Genome sequencing of many eukaryotic pathogens and the volume of data available on public resources have created a clear requirement for a consistent vocabulary to describe the range of developmental forms of parasites. Consistent labeling of experimental data and external data, in databases and the literature, is essential for integration, cross database comparison, and knowledge discovery. The primary objective of this work was to develop a dynamic and controlled vocabulary that can be used for various parasites. The paper describes the Ontology for Parasite Lifecycle (OPL) and discusses its application in parasite research. RESULTS: The OPL is based on the Basic Formal Ontology (BFO) and follows the rules set by the OBO Foundry consortium. The first version of the OPL models complex life cycle stage details of a range of parasites, such as Trypanosoma sp., Leishmaniasp., Plasmodium sp., and Shicstosoma sp. In addition, the ontology also models necessary contextual details, such as host information, vector information, and anatomical locations. OPL is primarily designed to serve as a reference ontology for parasite life cycle stages that can be used for database annotation purposes and in the lab for data integration or information retrieval as exemplified in the application section below. CONCLUSION: OPL is freely available at http://purl.obolibrary.org/obo/opl.owl and has been submitted to the BioPortal site of NCBO and to the OBO Foundry. We believe that database and phenotype annotations using OPL will help run fundamental queries on databases to know more about gene functions and to find intervention targets for various parasites. The OPL is under continuous development and new parasites and/or terms are being added.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    A Simplified Crossing Fiber Model in Diffusion Weighted Imaging

    Get PDF
    Diffusion MRI (dMRI) is a vital source of imaging data for identifying anatomical connections in the living human brain that form the substrate for information transfer between brain regions. dMRI can thus play a central role toward our understanding of brain function. The quantitative modeling and analysis of dMRI data deduces the features of neural fibers at the voxel level, such as direction and density. The modeling methods that have been developed range from deterministic to probabilistic approaches. Currently, the Ball-and-Stick model serves as a widely implemented probabilistic approach in the tractography toolbox of the popular FSL software package and FreeSurfer/TRACULA software package. However, estimation of the features of neural fibers is complex under the scenario of two crossing neural fibers, which occurs in a sizeable proportion of voxels within the brain. A Bayesian non-linear regression is adopted, comprised of a mixture of multiple non-linear components. Such models can pose a difficult statistical estimation problem computationally. To make the approach of Ball-and-Stick model more feasible and accurate, we propose a simplified version of Ball-and-Stick model that reduces parameter space dimensionality. This simplified model is vastly more efficient in the terms of computation time required in estimating parameters pertaining to two crossing neural fibers through Bayesian simulation approaches. Moreover, the performance of this new model is comparable or better in terms of bias and estimation variance as compared to existing models

    NeuroBridge ontology: computable provenance metadata to give the long tail of neuroimaging data a FAIR chance for secondary use

    Get PDF
    Background Despite the efforts of the neuroscience community, there are many published neuroimaging studies with data that are still not findable or accessible. Users face significant challenges in reusing neuroimaging data due to the lack of provenance metadata, such as experimental protocols, study instruments, and details about the study participants, which is also required for interoperability. To implement the FAIR guidelines for neuroimaging data, we have developed an iterative ontology engineering process and used it to create the NeuroBridge ontology. The NeuroBridge ontology is a computable model of provenance terms to implement FAIR principles and together with an international effort to annotate full text articles with ontology terms, the ontology enables users to locate relevant neuroimaging datasets. Methods Building on our previous work in metadata modeling, and in concert with an initial annotation of a representative corpus, we modeled diagnosis terms (e.g., schizophrenia, alcohol usage disorder), magnetic resonance imaging (MRI) scan types (T1-weighted, task-based, etc.), clinical symptom assessments (PANSS, AUDIT), and a variety of other assessments. We used the feedback of the annotation team to identify missing metadata terms, which were added to the NeuroBridge ontology, and we restructured the ontology to support both the final annotation of the corpus of neuroimaging articles by a second, independent set of annotators, as well as the functionalities of the NeuroBridge search portal for neuroimaging datasets. Results The NeuroBridge ontology consists of 660 classes with 49 properties with 3,200 axioms. The ontology includes mappings to existing ontologies, enabling the NeuroBridge ontology to be interoperable with other domain specific terminological systems. Using the ontology, we annotated 186 neuroimaging full-text articles describing the participant types, scanning, clinical and cognitive assessments. ConclusionThe NeuroBridge ontology is the first computable metadata model that represents the types of data available in recent neuroimaging studies in schizophrenia and substance use disorders research; it can be extended to include more granular terms as needed. This metadata ontology is expected to form the computational foundation to help both investigators to make their data FAIR compliant and support users to conduct reproducible neuroimaging research
    • …
    corecore