110 research outputs found

    QSAR and Molecular Docking Studies on a Series of Cinnamic Acid Analogues as Epidermal Growth Factor Receptor (EGFR) Inhibitors

    Get PDF
    Quantitative structure-activity relationship (QSAR) and docking studies have been performed on a large series of cinnamic acid analogues studied by various authors as Epidermal Growth Factor Receptor (EGFR) inhibitors. A multiple linear regression (MLR) analysis has shown that electronic properties of these compounds are the governing factors of their activity and docking study has shown that compounds can form hydrogen bonds with the receptor and have effective steric interactions involving dispersion forces. Using the MLR model, some new compounds were proposed that have higher potency than the existing ones.Declared non

    3D Deep Learning on Medical Images: A Review

    Full text link
    The rapid advancements in machine learning, graphics processing technologies and availability of medical imaging data has led to a rapid increase in use of deep learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, give a brief mathematical description of 3D CNN and the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection, and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models, in general) and possible future trends in the field.Comment: 13 pages, 4 figures, 2 table

    Superconductivity in Ru substituted BaFe2-xRuxAs2

    Get PDF
    The occurrence of bulk superconductivity at ~22 K is reported in polycrystalline samples of BaFe2-xRuxAs2 for nominal Ru content in the range of x=0.75 to 1.125. A systematic suppression of the spin density wave transition temperature (TSDW) precedes the appearance of superconductivity in the system. A phase diagram is proposed based on the measured TSDW and superconducting transition temperature (TC) variations as a function of Ru composition. Band structure calculations, indicate introduction of electron carriers in the system upon Ru substitutiom. The calculated magnetic moment on Fe shows a minimum at x=1.0, suggesting that the suppression of the magnetic moment is associated with the emergence of superconductivity. Results of low temperature and high field Mossbauer measurements are presented. These indicate weakening of magnetic interaction with Ru substitutionComment: 20 pages 10 figure

    Persistence in a Stationary Time-series

    Full text link
    We study the persistence in a class of continuous stochastic processes that are stationary only under integer shifts of time. We show that under certain conditions, the persistence of such a continuous process reduces to the persistence of a corresponding discrete sequence obtained from the measurement of the process only at integer times. We then construct a specific sequence for which the persistence can be computed even though the sequence is non-Markovian. We show that this may be considered as a limiting case of persistence in the diffusion process on a hierarchical lattice.Comment: 8 pages revte

    Superconductivity in SmFe1-xMxAsO (M = Co, Rh, Ir)

    Full text link
    In this paper we report the comparative study of superconductivity by 3d (Co), 4d (Rh), 5d (Ir) element doping in SmFeAsO. X-ray diffraction patterns indicate that the material has formed the ZrCuSiAs-type structure with a space group P4/nmm. It is found that the antiferromagnetic spin-density-wave (SDW) order in the parent compounds is rapidly suppressed by Co, Rh, and Ir doping, and superconductivity emerges. Both electrical resistance and magnetization measurements show superconductivity up to around 10 K in SmFe1-xMxAsO (M = Co, Rh, Ir). Co, Rh and Ir locate in the same column in the periodic table of elements but have different electronic band structure, so comparative study would add more ingredients to the underlying physics of the iron-based superconductors.Comment: 16 pages, 4 figures, 1 tabl
    corecore