44 research outputs found

    Allergy and Sensitization during Childhood Associated with Prenatal and Lactational Exposure to Marine Pollutants

    Get PDF
    Background: Breast-feeding may affect the risk of developing allergy during childhood and may also cause exposure to immunotoxicants, such as polychlorinated biphenyls (PCBs), which are of concern as marine pollutants in the Faroe Islands and the Arctic region. Objectives: The objective was to assess whether sensitization and development of allergic disease is associated with duration of breast-feeding and prenatal or postnatal exposures to PCBs and methylmercury. Methods: A cohort of 656 singleton births was formed in the Faroe Islands during 1999–2001. Duration of breast-feeding and history of asthma and atopic dermatitis were recorded at clinical examinations at 5 and 7 years of age. PCB and mercury concentrations were determined in blood samples obtained at parturition and at follow-up. Serum from 464 children (71%) at 7 years of age was analyzed for total immunoglobulin E (IgE) and grass-specific IgE. Results: The total IgE concentration in serum at 7 years of age was positively associated both with the concomitant serum PCB concentration and with the duration of breast-feeding. However, the effect only of the latter was substantially attenuated in a multivariate analysis. A raised grass-specific IgE concentration compatible with sensitization was positively associated with the duration of breast-feeding and inversely associated with prenatal methylmercury exposure. However, a history of asthma or atopic dermatitis was not associated with the duration of breast-feeding, although children with atopic dermatitis had lower prenatal PCB exposures than did nonallergic children. Conclusions: These findings suggest that developmental exposure to immunotoxicants may both increase and decrease the risk of allergic disease and that associations between breast-feeding and subsequent allergic disease in children may, at least in part, reflect lactational exposure to immunotoxic food contaminants

    Disease burden and conditioning regimens in ASCT1221, a randomized phase II trial in children with juvenile myelomonocytic leukemia: A Children's Oncology Group study

    Get PDF
    Background: Most patients with juvenile myelomonocytic leukemia (JMML) are curable only with allogeneic hematopoietic cell transplantation (HCT). However, the current standard conditioning regimen, busulfan-cyclophosphamide-melphalan (Bu-Cy-Mel), may be associated with higher risks of morbidity and mortality. ASCT1221 was designed to test whether the potentially less-toxic myeloablative conditioning regimen containing busulfan-fludarabine (Bu-Flu) would be associated with equivalent outcomes. Procedure: Twenty-seven patients were enrolled on ASCT1221 from 2013 to 2015. Pre- and post-HCT (starting Day +30) mutant allele burden was measured in all and pre-HCT therapy was administered according to physician discretion. Results: Fifteen patients were randomized (six to Bu-Cy-Mel and nine to Bu-Flu) after meeting diagnostic criteria for JMML. Pre-HCT low-dose chemotherapy did not appear to reduce pre-HCT disease burden. Two patients, however, received aggressive chemotherapy pre-HCT and achieved low disease-burden state; both are long-term survivors. All four patients with detectable mutant allele burden at Day +30 post-HCT eventually progressed compared to two of nine patients with unmeasurable allele burden (P = 0.04). The 18-month event-free survival of the entire cohort was 47% (95% CI, 21–69%), and was 83% (95% CI, 27–97%) and 22% (95% CI, 03–51%) for Bu-Cy-Mel and Bu-Flu, respectively (P = 0.04). ASCT1221 was terminated early due to concerns that the Bu-Flu arm had inferior outcomes. Conclusions: The regimen of Bu-Flu is inadequate to provide disease control in patients with JMML who present to HCT with large burdens of disease. Advances in molecular testing may allow better characterization of biologic risk, pre-HCT responses to chemotherapy, and post-HCT management

    Membrane-Bound IL-21 Promotes Sustained Ex Vivo Proliferation of Human Natural Killer Cells

    Get PDF
    NK cells have therapeutic potential for a wide variety of human malignancies. However, because NK cells expand poorly in vitro, have limited life spans in vivo, and represent a small fraction of peripheral white blood cells, obtaining sufficient cell numbers is the major obstacle for NK-cell immunotherapy. Genetically-engineered artificial antigen-presenting cells (aAPCs) expressing membrane-bound IL-15 (mbIL15) have been used to propagate clinical-grade NK cells for human trials of adoptive immunotherapy, but ex vivo proliferation has been limited by telomere shortening. We developed K562-based aAPCs with membrane-bound IL-21 (mbIL21) and assessed their ability to support human NK-cell proliferation. In contrast to mbIL15, mbIL21-expressing aAPCs promoted log-phase NK cell expansion without evidence of senescence for up to 6 weeks of culture. By day 21, parallel expansion of NK cells from 22 donors demonstrated a mean 47,967-fold expansion (median 31,747) when co-cultured with aAPCs expressing mbIL21 compared to 825-fold expansion (median 325) with mbIL15. Despite the significant increase in proliferation, mbIL21-expanded NK cells also showed a significant increase in telomere length compared to freshly obtained NK cells, suggesting a possible mechanism for their sustained proliferation. NK cells expanded with mbIL21 were similar in phenotype and cytotoxicity to those expanded with mbIL15, with retained donor KIR repertoires and high expression of NCRs, CD16, and NKG2D, but had superior cytokine secretion. The mbIL21-expanded NK cells showed increased transcription of the activating receptor CD160, but otherwise had remarkably similar mRNA expression profiles of the 96 genes assessed. mbIL21-expanded NK cells had significant cytotoxicity against all tumor cell lines tested, retained responsiveness to inhibitory KIR ligands, and demonstrated enhanced killing via antibody-dependent cell cytotoxicity. Thus, aAPCs expressing mbIL21 promote improved proliferation of human NK cells with longer telomeres and less senescence, supporting their clinical use in propagating NK cells for adoptive immunotherapy

    A prognostic model predicting autologous transplantation outcomes in children, adolescents and young adults with Hodgkin lymphoma

    Get PDF
    Autologous hematopoietic cell transplantation (AutoHCT) is a potentially curative treatment modality for relapsed/refractory Hodgkin lymphoma (HL). However, no large studies have evaluated pre-transplant factors predictive of outcomes of AutoHCT in children, adolescents and young adults (CAYA, age <30 years). In a retrospective study, we analyzed 606 CAYA patients (median age 23 years) with relapsed/refractory HL who underwent AutoHCT between 1995–2010. The probabilities of progression free survival (PFS) at 1, 5 and 10 years were 66% (95% CI: 62–70), 52% (95% CI: 48–57) and 47% (95% CI: 42–51), respectively. Multivariate analysis for PFS demonstrated that at the time of AutoHCT patients with Karnofsky/Lansky score ≥90, no extranodal involvement and chemosensitive disease had significantly improved PFS. Patients with time from diagnosis to first relapse of <1 year had a significantly inferior PFS. A prognostic model for PFS was developed that stratified patients into low, intermediate and high-risk groups, predicting for 5-year PFS probabilities of 72% (95% CI: 64–80), 53% (95% CI: 47–59) and 23% (95% CI: 9–36), respectively. This large study identifies a group of CAYA patients with relapsed/refractory HL who are at high risk for progression after AutoHCT. Such patients should be targeted for novel therapeutic and/or maintenance approaches post-AutoHCT

    Transplantation-Related Mortality, Graft Failure, and Survival after Reduced-Toxicity Conditioning and Allogeneic Hematopoietic Stem Cell Transplantation in 100 Consecutive Pediatric Recipients

    Get PDF
    AbstractAllogeneic hematopoietic stem cell transplantation (allo-HSCT) with myeloablative conditioning is associated with a 10%-40% risk of day +100 transplantation-related mortality (TRM). We evaluated the feasibility and safety of reduced-toxicity conditioning and allo-HSCT in 100 consecutive children and adolescent recipients (mean age, 9.2 ± 6.8 years). The mean duration of follow-up was 1278 ± 1042 days. Fifty patients had malignant disease. The median time to neutrophil recovery was 18 days, and the median time to platelet recovery was 43 days. Median donor chimerism in engrafted patients was 98% on day +100 and 98% on day +365. The cumulative incidence of acute graft-versus-host disease (GVHD) was 20% (95% confidence interval [CI], 12.1%-27.9%), and that of chronic GVHD was 13.5% (95% CI, 6.6%-20.4%). TRM was 3% (95% CI, 0%-6.4%) by day +100 and 13.6% (95% CI, 6.7%-20.5%) for the entire study period. The incidence of primary graft failure (PGF) was 16% overall, 31.4% after umbilical cord blood transplantation (UCBT), and 0% after allo-HSCT with matched unrelated or matched sibling donors (P < .0001). The incidence of PGF in UCBT recipients was 46.7% (14 of 30) in chemotherapy-naive recipients, versus 9.5% (2 of 21) in non–chemotherapy-naive recipients (P = .019). Five-year event-free survival was 59.5% ± 5%, and 5-year overall survival was 72.9% ± 5%. Only PGF and poor-risk disease status were significantly associated with decreased overall survival (P = .03). Reduced-toxicity conditioning allo-HSCT in pediatric recipients is associated with low TRM; however, chemotherapy-naive UCBT recipients have a significantly higher incidence of PGF
    corecore