40 research outputs found

    The HiSCORE Project

    Get PDF
    A central question of Astroparticle Physics, the origin of cosmic rays, still remains unsolved. HiSCORE (Hundred*i Square-km Cosmic ORigin Explorer) is a concept for a large-area wide-angle non-imaging air shower detector, addressing this question by searching for cosmic ray pevatrons in the energy range from 10TeV to few PeV and cosmic rays in the energy range above 100TeV. In the framework of the Tunka-HiSCORE project, first prototypes have been deployed on the site of the Tunka-133 experiment, where we plan to install an engineering array covering an area of the order of 1km2. On the same site, also imaging and particle detectors are planned, potentially allowing a future hybrid detector system. Here we present the HiSCORE detector principle, its potential for cosmic ray origin search and the status of ongoing activities in the framework of the Tunka-HiSCORE experiment

    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio

    Quantum gravity phenomenology at the dawn of the multi-messenger era -- A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers

    Characteristics of Plasma Dynamics in Current Sheets Formed in Helium Plasma

    No full text
    The characteristic features of plasma acceleration in the current sheets are discussed on the basis of an analysis of the structure of electrodynamic forces at successive stages of the evolution of the current sheets formed in the plasma with helium ions. Of particular interest is the generation of reverse currents at the side edges of the sheet and the appearance of forces, which are braking previously accelerated plasma flows

    Characteristics of Plasma Dynamics in Current Sheets Formed in Helium Plasma

    No full text
    The characteristic features of plasma acceleration in the current sheets are discussed on the basis of an analysis of the structure of electrodynamic forces at successive stages of the evolution of the current sheets formed in the plasma with helium ions. Of particular interest is the generation of reverse currents at the side edges of the sheet and the appearance of forces, which are braking previously accelerated plasma flows
    corecore