177 research outputs found

    An Analysis of the Effects of Low Energy Electron Radiation of Al\u3csub\u3ex\u3c/sub\u3eGa\u3csub\u3e1-x\u3c/sub\u3eN/GaN Modulation-Doped Field-Effect Transistors

    Get PDF
    The effects of radiation on AlxGa1-xN/GaN MODFETs is an area of increasing interest to the USAF as these devices become developed and integrated in satellite-based systems Irradiation is also a valuable tool for analyzing the quantum-level characteristics and properties that are responsible for device operation AlxGa1-xN/GaN MODFETs were fabricated and irradiated at liquid nitrogen temperatures by 0,45-1,2MeV electrons up to doses of 6*1016 e/cm2. Following irradiation, low temperature I-V measurements were recorded providing dose-dependent measurements Temperature-dependent I-V measurements were also made during room temperature annealing following irradiation I-V measurements indicate radiation-induced changes occur in these devices creating increased gate and drain currents These increased currents are only maintained at low temperatures (T \u3c 300 K), It is believed that the increase in gate current is caused by an increase in the electron trap concentration of the AlxGa1-xN/GaN layer, This increase in trap concentration directly increases the trap-assisted tunneling current resulting in the observed increase in gate current The mechanism causing the increase in drain current is unknown, Several theories explaining this increase are presented along with the additional research necessary to illuminate the correct theory, This is the first experiment involving electron radiation of AlxGa1-xN/GaN MODFETs

    Engineered Surfaces to Control Secondary Electron Yield for Multipactor Suppression

    Get PDF
    A significant problem for satellites, vacuum electron devices, and particle accelerators is multipactor: an avalanche of electrons caused by recurring secondary electron emission (SEE) in a time-varying electric field. The consequences of multipactor range from temporary to permanent device failure. This research studied how surface topography can be engineered to minimize SEE and suppress multipactor. Two new semi-empirical models (one based on a 2D pore, the other based on a 3D pore) were developed to predict the secondary electron yield (SEY) of a porous surface based on pore aspect ratio and porosity. The models were validated with experimental SEY measurements of microporous gold surfaces. The more accurate 3D model predicts that a porous gold surface with pore aspect ratios = 2.0 and porosity = 0.5 will control the maximum SEY to near unity, providing a multipactor-resistant surface. Both the SEY models and experimental results confirm the understanding that the ability of a porous surface to control SEY is not dependent on pore size

    Engineered surfaces to control secondary electron emission for multipactor suppression

    Get PDF
    A significant problem for space-based systems is multipactor - an avalanche of electrons caused by repeated secondary electron emission (SEE). The consequences of multipactor range from altering the operation of radio frequency (RF) devices to permanent device damage. Existing efforts to suppress multipactor rely heavily on limiting power levels below a multipactor threshold [1]. This research applies surface micromachining techniques to create porous surfaces to control the secondary electron yield (SEY) of a material for multipactor suppression. Surface characteristics of interest include pore aspect ratio and density. A discussion is provided on the advantage of using electroplating (vice etching) to create porous surfaces for studying the relationships between SEY and pore aspect ratio & density (i.e. porosity). Preventing multipactor through SEY reduction will allow power level restrictions to be eased, leading to more powerful and capable space-based systems

    Surface Feature Engineering through Nanosphere Lithography

    Get PDF
    How surface geometries can be selectively manipulated through nanosphere lithography (NSL) is discussed. Self-assembled monolayers and multilayers of nanospheres have been studied for decades and have been applied to lithography for almost as long. When compared to the most modern, state-of-the-art techniques, NSL offers comparable feature resolution with many advantages over competing technologies

    Modeling Micro-porous Surfaces for Secondary Electron Emission Control to Suppress Multipactor

    Get PDF
    This work seeks to understand how the topography of a surface can be engineered to control secondary electron emission (SEE) for multipactor suppression. Two unique, semi-empirical models for the secondary electron yield (SEY) of a micro-porous surface are derived and compared. The first model is based on a two-dimensional (2D) pore geometry. The second model is based on a three-dimensional (3D) pore geometry. The SEY of both models is shown to depend on two categories of surface parameters: chemistry and topography. An important parameter in these models is the probability of electron emissions to escape the surface pores. This probability is shown by both models to depend exclusively on the aspect ratio of the pore (the ratio of the pore height to the pore diameter). The increased accuracy of the 3D model (compared to the 2D model) results in lower electron escape probabilities with the greatest reductions occurring for aspect ratios less than two. In order to validate these models, a variety of micro-porous gold surfaces were designed and fabricated using photolithography and electroplating processes. The use of an additive metal-deposition process (instead of the more commonly used subtractive metal-etch process) provided geometrically ideal pores which were necessary to accurately assess the 2D and 3D models. Comparison of the experimentally measured SEY data with model predictions from both the 2D and 3D models illustrates the improved accuracy of the 3D model. For a micro-porous gold surface consisting of pores with aspect ratios of two and a 50% pore density, the 3D model predicts that the maximum total SEY will be one. This provides optimal engineered surface design objectives to pursue for multipactor suppression using gold surfaces. © 2017 Author(s)

    An Innovative Non-Pharmacologic Treatment for Delusional Misidentification in Persons with Major Neurocognitive Disorder

    Get PDF
    Misidentification delusions are false, fixed beliefs that assign an incorrect identity to a previously familiar or unfamiliar person or place. Such delusions are common in several neuropsychiatric disorders and place a particular burden on individuals with Major Neurocognitive Disorder and their caregivers. No standard pharmacologic or non-pharmacologic treatment approaches have been shown to be consistently effective in addressing this problem. We describe two caregiver-care recipient dyads in which an innovative non-pharmacologic, digital intervention reduced delusional misidentification, improved care recipient behavior, and decreased caregiver burden
    • …
    corecore