38 research outputs found

    STAT1 regulates interferon-γ-induced angiotensinogen and MCP-1 expression in a bidirectional manner in primary cultured mesangial cells

    Get PDF
    Objective: Intrarenal interferon-γ significantly contributes to the development of glomerular injury in which angiotensinogen and monocyte chemoattractant protein 1 levels are elevated. However, the exact nature of the role that interferon-γ plays in regulating angiotensinogen and monocyte chemoattractant protein 1 expression has not been fully delineated. Therefore, the aim of this study was to investigate the role that interferon-γ plays in angiotensinogen and monocyte chemoattractant protein 1 expression. Methods: Primary cultured rat mesangial cells were treated with 0–20 ng/mL interferon-γ for 2, 8 or 24 hours. Expression levels of angiotensinogen, monocyte chemoattractant protein 1, suppressors of cytokine signaling 1, an intracellular suppressor of Janus kinase-signal transducers and activators of transcription signaling and activity of the Janus kinase-signal transducers and activators of transcription pathway were evaluated by reverse transcriptase polymerase chain reaction and western blot analysis. Results: Interferon-γ increased angiotensinogen expression in mesangial cells with maximal augmentation observed following 5 ng/mL interferon-γ at 8 hours of treatment (1.87 ± 0.05, mRNA, relative ratio). Further increases were reduced or absent using higher concentrations of interferon-γ. Following treatments, monocyte chemoattractant protein 1 expression was induced in a linear dose-dependent manner (6.85 ± 0.62-fold by 20 ng/mL interferon-γ at 24 hours). In addition, interferon-γ induced STAT1 phosphorylation and suppressors of cytokine signaling 1 expression in a linear dose-dependent manner. The suppression of STAT1 and suppressors of cytokine signaling 1 expression by small interference RNAs facilitated an increase in interferon-γ-induced angiotensinogen expression, indicating that these two factors negatively regulate angiotensinogen expression. In contrast, the increase in interferon-γ-induced monocyte chemoattractant protein 1 expression was attenuated in STAT1-deficient mesangial cells, suggesting that STAT1 positively regulates monocyte chemoattractant protein 1 expression in mesangial cells. Conclusion: These results demonstrate that while interferon-γ increases both angiotensinogen and monocyte chemoattractant protein 1 expression, STAT1 plays an opposing role in the regulation of each factor in mesangial cells

    Immunosuppression by Mycophenolate Mofetil Mitigates Intrarenal Angiotensinogen Augmentation in Angiotensin II-Dependent Hypertension

    No full text
    Augmentation of intrarenal angiotensinogen (AGT) leads to further formation of intrarenal angiotensin II (Ang II) and the development of hypertensive kidney injury. Recent studies demonstrated that macrophages and the enhanced production of pro-inflammatory cytokines can be crucial mediators of renal AGT augmentation in hypertension. Accordingly, this study investigated the effects of immunosuppression by mycophenolate mofetil (MMF) on intrarenal AGT augmentation. Ang II (80 ng/min) was infused with or without daily administration of MMF (50 mg/kg) to Sprague-Dawley rats for 2 weeks. Mean arterial pressure (MAP) in Ang II infused rats was slightly higher (169.7 ± 6.1 mmHg) than the Ang II + MMF group (154.7 ± 2.0 mmHg), but was not statistically different from the Ang II + MMF group. MMF treatment suppressed Ang II-induced renal macrophages and IL-6 elevation. Augmentation of urinary AGT by Ang II infusion was attenuated by MMF treatment (control: 89.3 ± 25.2, Ang II: 1194 ± 305.1, and Ang II + MMF: 389 ± 192.0 ng/day). The augmentation of urinary AGT by Ang II infusion was observed before the onset of proteinuria. Elevated intrarenal AGT mRNA and protein levels in Ang II infused rats were also normalized by the MMF treatment (AGT mRNA, Ang II: 2.5 ± 0.2 and Ang II + MMF: 1.5 ± 0.1, ratio to control). Ang II-induced proteinuria, mesangial expansion and renal tubulointerstitial fibrosis were attenuated by MMF. Furthermore, MMF treatment attenuated the augmentation of intrarenal NLRP3 mRNA, a component of inflammasome. These results indicate that stimulated cytokine production in macrophages contributes to intrarenal AGT augmentation in Ang II-dependent hypertension, which leads to the development of kidney injury

    HDAC9 is an epigenetic repressor of kidney angiotensinogen establishing a sex difference

    No full text
    Abstract Background Sexual difference has been shown in the pathogenesis of chronic kidney disease induced by hypertension. Females are protected from hypertension and related end-organ damage. Augmentation of renal proximal tubular angiotensinogen (AGT) expression can promote intrarenal angiotensin formation and the development of associated hypertension and kidney injury. Female rodents exhibit lower intrarenal AGT levels than males under normal conditions, suggesting that the suppressed intrarenal AGT production by programmed mechanisms in females may provide protection from these diseases. This study was performed to examine whether epigenetic mechanisms serve as repressors of AGT. Methods Male and female Sprague Dawley rats were used to investigate sex differences of systemic, hepatic, and intrarenal AGT levels. All histone deacetylase (HDAC) mRNA levels in the kidneys were determined using a PCR array. HDAC9 protein expression in the kidneys and cultured renal proximal tubular cells (PTC) was analyzed by Western blot analysis and immunohistochemistry. The effects of HDAC9 on AGT expression were evaluated by using an inhibitor and siRNA. ChIP assay was performed to investigate the interaction between the AGT promoter and HDAC9. Results Plasma and liver AGT levels did not show differences between male and female Sprague-Dawley rats. In contrast, females exhibited lower AGT levels than males in the renal cortex and urine. In the absence of supplemented sex hormones, primary cultured renal cortical cells isolated from female rats sustained lower AGT levels than those from males, suggesting that the kidneys have a unique mechanism of AGT regulation controlled by epigenetic factors rather than sex hormones. HDAC9 mRNA and protein levels were higher in the renal cortex of female rats versus male rats (7.09 ± 0.88, ratio to male) while other HDACs did not exhibit a sex difference. HDAC9 expression was localized in PTC which are the primary source of intrarenal AGT. Importantly, HDAC9 knockdown augmented AGT mRNA (1.92 ± 0.35-fold) and protein (2.25 ± 0.50-fold) levels, similar to an HDAC9 inhibitor. Furthermore, an interaction between HDAC9 and a distal 5’ flanking region of AGT via a histone complex containing H3 and H4 was demonstrated. Conclusions These results indicate that HDAC9 is a novel suppressing factor involved in AGT regulation in PTC, leading to low levels of intrarenal AGT in females. These findings will help to delineate mechanisms underlying sex differences in the development of hypertension and renin-angiotensin system (RAS) associated kidney injury

    The Renin-Angiotensin-Aldosterone System in Metabolic Diseases and Other Pathologies

    No full text
    It has been our pleasure to have been able to develop two special issues within the International Journal of Molecular Sciences: (1) Renin-Angiotensin-Aldosterone System in Pathologies and (2) Renin-Angiotensin-Aldosterone System in Metabolism & Disease [...

    Tumor necrosis factor-α suppresses angiotensinogen expression through formation of a p50/p50 homodimer in human renal proximal tubular cells

    No full text
    Angiotensinogen (AGT) expression in renal proximal tubular cells (RPTCs) and intrarenal tumor necrosis factor-α (TNF-α) levels are increased in hypertension and renal diseases However, the contribution of TNF-α to AGT expression in RPTCs has not been established. Therefore, the objective of the present study was to determine influence of TNF-α on AGT expression in RPTCs. Human kidney-2 (HK-2) cells, immortalized human RPTCs, were treated with several concentrations of TNF-α up to 24 h. AGT mRNA and protein expression were evaluated by RT-PCR and ELISA, respectively. Activation of nuclear factor-κB (NF-κB) by TNF-α was evaluated by Western blot analysis, immunocytochemistry, and electrophoretic mobility shift assay (EMSA). TNF-α suppressed AGT mRNA expression in a dose- and time-dependent manner. Maximum AGT mRNA reduction was caused by 40 ng/ml of TNF-α (0.52 ± 0.09, ratio to control, at 24 h) and at 24 h (0.66 ± 0.05, ratio to control, by 10 ng/ml TNF-α). TNF-α reduced AGT protein accumulation in the medium between 8 and 24 h (0.62 ± 0.13 by 40 ng/ml TNF-α, ratio to control). TNF-α activated and induced translocalization of p50 and p65, which are NF-κB subunits. Elevated formation of p50/p65 and p50/p50 dimers by TNF-α were observed by EMSA and supershift assay. Gene silencing of p50, but not p65, attenuated the effect of TNF-α on reduction of AGT expression in RPTCs. These results indicate that TNF-α suppresses AGT expression through p50/p50 homodimer formation in human RPTCs, suggesting a possible counteracting mechanism that limits excessive intrarenal AGT production
    corecore