119 research outputs found

    Orthodontic aligner incorporating Eucommia ulmoides exerts low continuous force: In vitro study

    Get PDF
    The aim of this study was to investigate the orthodontic force exerted by thermoplastic orthodontic appliances incorporating Eucommia ulmoides in terms of usefulness as the aligner-type orthodontic device. Erkodur, Essix C+®, Eucommia elastomer, and edgewise brackets were used (n = 3, each; thickness = 1.0 mm, each). The orthodontic force on the upper right incisor was measured every 24 h for two weeks using a custom-made measuring device. The force of the Eucommia elastomer (4.25 ± 0.274 N) and multi bracket system (5.32 ± 0.338 N) did not change from the beginning to the end (p > 0.01). The orthodontic force exerted by the Eucommia elastomer was lower than that of the multi-bracket orthodontic appliance from the beginning to the end. The force of Erkodur significantly decreased from the beginning to 24 h (6.47 ± 1.40 N) and 48 h (3.30 ± 0.536 N) (p < 0.01). The force of Essix C+® significantly decreased from the beginning (13.2 ± 0.845 N) to 24 h (8.77 ± 0.231 N) (p < 0.01). The thermoplastic orthodontic appliance made of Eucommia elastomer continuously exerted a constant orthodontic force for two weeks under water immersion conditions. The orthodontic force of Eucommia elastomer was found to be similar to the orthodontic force exerted by the multi-bracket orthodontic appliance with 0.019 x 0.025 in nickel-titanium wire. These results suggest that the Eucommia elastomer has possibly become one of the more useful materials to form thermoplastic orthodontic appliance exerting low continues orthodontic force.Inoue S., Yamaguchi S., Uyama H., et al. Orthodontic aligner incorporating Eucommia ulmoides exerts low continuous force: In vitro study. Materials 13, 4085 (2020); https://doi.org/10.3390/ma13184085

    Beneficial effect of tetrahydrobiopterin on ischemia-reperfusion injury in isolated perfused rat hearts

    Get PDF
    AbstractObjective: It has recently been proposed that nitric oxide synthase, in the presence of suboptimal levels of tetrahydrobiopterin, an essential cofactor of this enzyme, might favor increased production of oxygen radicals. The aim of this study was to clarify whether supplement with tetrahydrobiopterin would exert a cardioprotective effect against ischemia-reperfusion injury. Methods: Isolated perfused rat hearts were subjected to 30 minutes of global ischemia and 30 minutes of reperfusion at 37°C. Hearts were treated with tetrahydrobiopterin or vehicle for 5 minutes just before ischemia and during the first 5 minutes of the reperfusion period. Effects of tetrahydrobiopterin on left ventricular function, myocardial contents of lipid peroxidation and high-energy phosphates, and levels of lactate dehydrogenase and nitrite plus nitrate in perfusate during ischemia and after reperfusion were estimated and further compared with those of superoxide dismutase plus catalase or l-ascorbic acid. Results: Tetrahydrobiopterin and superoxide dismutase plus catalase both improved contractile and metabolic abnormalities in reperfused hearts. On the other hand, l-ascorbic acid at a dose having an equipotent radical scavenging activity with tetrahydrobiopterin did not significantly affect the postischemic changes. Although tetrahydrobiopterin and superoxide dismutase plus catalase significantly alleviated ischemic contracture during ischemia, diminished perfusate levels of nitrite plus nitrate after reperfusion were restored only with tetrahydrobiopterin. Conclusion: Results demonstrated that tetrahydrobiopterin lessens ischemia-reperfusion injury in isolated perfused rat hearts, probably independent of its intrinsic radical scavenging action. The cardioprotective effect of tetrahydrobiopterin implies that tetrahydrobiopterin could be a novel and effective therapeutic option in the treatment of ischemia-reperfusion injury.J Thorac Cardiovasc Surg 2002;124:775-8

    Theory of tunneling spectroscopy in superconducting Sr2RuO4

    Full text link
    A theory for tunneling spectroscopy in normal metal /insulator/triplet superconductor junction is presented. We assume two kinds of non-unitary triplet superconducting states which are the most promising states for Sr2_{2}RuO4_{4}. The calculated conductance spectra showzero-bias peaks as well as gap structures. The existences of residual components in the spectra reflect the non-unitary properties of superconducting states.Comment: 5pages, 4figures(included), to be published in Phys.Rev.B 56, (1997

    The fungal metabolite (+)-terrein abrogates osteoclast differentiation via suppression of the RANKL signaling pathway through NFATc1

    Get PDF
    Pathophysiological bone resorption is commonly associated with periodontal disease and involves the excessive resorption of bone matrix by activated osteoclasts. Receptor activator of nuclear factor (NF)-κB ligand (RANKL) signaling pathways have been proposed as targets for inhibiting osteoclast differentiation and bone resorption. The fungal secondary metabolite (+)-terrein is a natural compound derived from Aspergillus terreus that has previously shown anti-interleukin-6 properties related to inflammatory bone resorption. However, its effects and molecular mechanism of action on osteoclastogenesis and bone resorption remain unclear. In the present study, we showed that 10 µM synthetic (+)-terrein inhibited RANKL-induced osteoclast formation and bone resorption in a dose-dependent manner and without cytotoxicity. RANKL-induced messenger RNA expression of osteoclast-specific markers including nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), the master regulator of osteoclastogenesis, cathepsin K, tartrate-resistant acid phosphatase (Trap) was completely inhibited by synthetic (+)-terrein treatment. Furthermore, synthetic (+)-terrein decreased RANKL-induced NFATc1 protein expression. This study revealed that synthetic (+)-terrein attenuated osteoclast formation and bone resorption by mediating RANKL signaling pathways, especially NFATc1, and indicated the potential effect of (+)-terrein on inflammatory bone resorption including periodontal disease

    The Fungal Metabolite (+)-Terrein Abrogates Ovariectomy-Induced Bone Loss and Receptor Activator of Nuclear Factor-kappa B Ligand-Induced Osteoclastogenesis by Suppressing Protein Kinase-C alpha/beta II Phosphorylation

    Get PDF
    Osteoporosis is a common disease characterized by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. Severe bone loss due to osteoporosis triggers pathological fractures and consequently decreases the daily life activity and quality of life. Therefore, prevention of osteoporosis has become an important issue to be addressed. We have reported that the fungal secondary metabolite (+)-terrein (TER), a natural compound derived from Aspergillus terreus, has shown receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast differentiation by suppressing nuclear factor of activated T-cell 1 (NFATc1) expression, a master regulator of osteoclastogenesis. TER has been shown to possess extensive biological and pharmacological benefits; however, its effects on bone metabolism remain unclear. In this study, we investigated the effects of TER on the femoral bone metabolism using a mouse-ovariectomized osteoporosis model (OVX mice) and then on RANKL signal transduction using mouse bone marrow macrophages (mBMMs). In vivo administration of TER significantly improved bone density, bone mass, and trabecular number in OVX mice (p < 0.01). In addition, TER suppressed TRAP and cathepsin-K expression in the tissue sections of OVX mice (p < 0.01). In an in vitro study, TER suppressed RANKL-induced phosphorylation of PKC alpha/beta II, which is involved in the expression of NFATc1 (p < 0.05). The PKC inhibitor, GF109203X, also inhibited RANKL-induced osteoclastogenesis in mBMMs as well as TER. In addition, TER suppressed the expression of osteoclastogenesis-related genes, such as Ocstamp, Dcstamp, Calcr, Atp6v0d2, Oscar, and Itgb3 (p < 0.01). These results provide promising evidence for the potential therapeutic application of TER as a novel treatment compound against osteoporosis

    Josephson current in s-wave superconductor / Sr_2RuO_4 junctions

    Full text link
    The Josephson current between an s-wave and a spin-triplet superconductor Sr2_2RuO4_4 (SRO) is studied theoretically. In spin-singlet / spin-triplet superconductor junctions, there is no Josephson current proportional to sinϕ\sin \phi in the absence of the spin-flip scattering near junction interfaces, where ϕ\phi is a phase-difference across junctions. Thus a dominant term of the Josephson current is proportional to sin2ϕ\sin 2\phi . The spin-orbit scattering at the interfaces gives rise to the Josephson current proportional to cosϕ\cos\phi, which is a direct consequence of the chiral paring symmetry in SRO
    corecore