4,382 research outputs found

    Phase diagram of the one-dimensional half-filled extended Hubbard model

    Full text link
    We study the ground state of the one-dimensional half-filled Hubbard model with on-site (nearest-neighbor) repulsive interaction UU (VV) and nearest-neighbor hopping tt. In order to obtain an accurate phase diagram, we consider various physical quantities such as the charge gap, spin gap, Luttinger-liquid exponents, and bond-order-wave (BOW) order parameter using the density-matrix renormalization group technique. We confirm that the BOW phase appears in a substantial region between the charge-density-wave (CDW) and spin-density-wave phases. Each phase boundary is determined by multiple means and it allows us to do a cross-check to demonstrate the validity of our estimations. Thus, our results agree quantitatively with the renormalization group results in the weak-coupling regime (U≲2tU \lesssim 2t), with the perturbation results in the strong-coupling regime (U≳6tU \gtrsim 6t), and with the quantum Monte Carlo results in the intermediate-coupling regime. We also find that the BOW-CDW transition changes from continuous to first order at the tricritical point (Ut,Vt)≈(5.89t,3.10t)(U_{\rm t}, V_{\rm t}) \approx (5.89t, 3.10t) and the BOW phase vanishes at the critical end point (Uc,Vc)≈(9.25t,4.76t)(U_{\rm c}, V_{\rm c}) \approx (9.25t, 4.76t).Comment: 4 pages, 5 figure

    Theory of Mott insulator/band insulator heterostructure

    Full text link
    A theory of heterostructures comprised of LaTiO3_3 (a Mott insulator) and SrTiO3_3 (a band insulator) is presented. The band structure of the Ti dd% -electrons is treated with a nearest neighbor tight-binding approximation; the electric fields arising from the La3+^{3+}/Sr2+^{2+} charge difference and the carriers are treated within a Hartree approximation; and the on-site interactions are treated by unrestricted Hartree-Fock. The phase diagram as a function of interaction strength and layer number is determined and predictions are made for optical conductivity experiments. A note worthy finding is that the edges of the heterostructure are generally metallic.Comment: 11 pages, 9 figure

    Wino Dark Matter in light of the AMS-02 2015 Data

    Full text link
    The AMS-02 collaboration has recently reported the antiproton to proton ratio with improved accuracy. In view of uncertainties of the production and the propagation of the cosmic rays, the observed ratio is still consistent with the secondary astrophysical antiproton to proton ratio. However, it is nonetheless enticing to examine whether the observed spectrum can be explained by a strongly motivated dark matter, the wino dark matter. As we will show, we find that the antiproton flux from the wino annihilation can explain the observed spectrum well for its mass range 2.5-3 TeV. The fit to data becomes particularly well compared to the case without the annihilation for the thermal wino dark matter case with a mass about 3 TeV. The ratio is predicted to be quickly decreased at the energy several hundreds of GeV, if this possibility is true, and it will be confirmed or ruled out in near future when the AMS-02 experiment accumulates enough data at this higher energy region.Comment: 6 pages, 2 figures, version accepted for publication in PRD (Rapid Communication

    Closed formula for the relative entropy of entanglement

    Full text link
    The long-standing problem of finding a closed formula for the relative entropy of entanglement (REE) for two qubits is addressed. A compact-form solution to the inverse problem, which characterizes an entangled state for a given closest separable state, is obtained. Analysis of the formula for a large class of entangled states strongly suggests that a compact analytical solution of the original problem, which corresponds to finding the closest separable state for a given entangled state, can be given only in some special cases. A few applications of the compact-form formula are given to show additivity of the REE, to relate the REE with the Rains upper bound for distillable entanglement, and to show that a Bell state does not have a unique closest separable state.Comment: 7 pages, the title was modified as suggested by the PRA editor

    Mass of Decaying Wino from AMS-02 2014

    Get PDF
    We revisit the decaying wino dark matter scenario in the light of the updated positron fraction, electron and positron fluxes in cosmic ray recently reported by the AMS-02 collaboration. We show the AMS-02 results favor the mass of the wino dark matter at around a few TeV, which is consistent with the prediction on the wino mass in the pure gravity mediation model.Comment: 10 pages, 1 figur

    Hyperon-Quark Mixed Phase in Compact Stars

    Full text link
    We investigate the properties of the hadron-quark mixed phase in compact stars using a Brueckner-Hartree-Fock framework for hadronic matter and the MIT bag model for quark matter. We find that the equation of state of the mixed phase is similar to that given by the Maxwell construction. The composition of the mixed phase, however, is very different from that of the Maxwell construction; in particular, hyperons are completely suppressed.Comment: oral presentation at INPC 2007, Toky

    Spin-dependent observables in surrogate reactions

    Full text link
    Observables emitted from various spin states in compound U nuclei are investigated to validate usefulness of the surrogate reaction method. It was found that energy spectrum of cascading γ\gamma-rays and their multiplicities, spectrum of evaporated neutrons, and mass-distribution of fission fragments show clear dependence on the spin of decaying nuclei. The present results indicate that they can be used to infer populated spin distributions which significantly affect the decay branching ratio of the compound system produced by the surrogate reactions

    Charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4: Cooperative effects of electron correlations and lattice distortions

    Full text link
    Combined effects of electron correlations and lattice distortions are investigated on the charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4 theoretically in a two-dimensional 3/4-filled extended Hubbard model with electron-lattice couplings. It is known that this material undergoes a phase transition from a high-symmetry metallic state to a low-symmetry insulating state with a horizontal-stripe charge order (CO) by lowering temperature. By means of the exact-diagonalization method, we show that electron-phonon interactions are crucial to stabilize the horizontal-stripe CO and to realize the low-symmetry crystal structure.Comment: 7 peges, 7 figures, accepted for publication in Phys. Rev.

    Electron-lattice coupling, orbital stability and the phase diagram of Ca2−x_{2-x}Srx_xRuO4_4

    Full text link
    Hartree-Fock calculations are presented of a theoretical model describing the Sr/CaRuO4_4 family of compounds. Both commensurate and incommensurate magnetic states are considered, along with orbital ordering and the effect of lattice distortions. For reasonable parameter values, interactions disfavor orbital disproportionation. A coherent description of the observed phase diagram is obtained.Comment: Changed content, and added a new referenc
    • …
    corecore