144 research outputs found

    Numerical predictions of 3D power-supply on chip taking into considerations of proximity effect

    Get PDF
    3D Power-SoC (Supply on Chip), which can ultimately miniaturize the power supply, is attracted attentions. It integrates Si-LSIs, power devices and passive elements on a single chip. 3D Power-SoC requires frequencies above 30MHz. In addition, it realizes a very high power density, however handling power is small because of miniaturization. Therefore, parallel connection is required to increase the power handing capacity. Therefore, it is necessary to consider the proximity effect of the spiral inductor when the power supplies connected in parallel. In this paper, we report the proximity effect of the inductor through simulations.2021 IEEE International 3D Systems Integration Conference (3DIC 2021), November 15-18, 2021 North Carolina, US

    Wave Chaos in Rotating Optical Cavities

    Full text link
    It is shown that, even when the eigenmodes of an optical cavity are wave-chaotic, the frequency splitting due to the rotation of the cavity occurs and the frequency difference is proportional to the angular velocity although the splitting eigenmodes are still wave-chaotic and do not correspond to any unidirectionally-rotating waves.Comment: 4 pages, 6 figure

    Hepatitis E virus in Norway rats (Rattus norvegicus) captured around pig farm

    Get PDF
    BACKGROUND: Hepatitis E virus (HEV) transmitted via the oral route through the consumption of contaminated water or uncooked or undercooked contaminated meat has been implicated in major outbreaks. Rats may play a critical role in HEV outbreaks, considering their negative effects on environmental hygiene and food sanitation. Although the serological evidence of HEV infection in wild rodents has been reported worldwide, the infectivity and propagation of HEV in wild rats remain unknown. To investigate if rats are a possible carrier of HEV, we studied wild Norway rats (Rattus norvegicus) that were caught near a pig farm, where HEV was prevalent among the pigs. METHODS: We examined 56 Norway rats for HEV. RNA from internal organs was examined for RT-PCR and positive samples were sequenced. Positive tissue samples were incubated with A549 cell line to isolate HEV. Anti-HEV antibodies were detected by ELISA. RESULTS: Sixteen rats were seropositive, and the HEV RNA was detected in 10 of the 56 rats. Sequencing of the partial ORF1 gene from 7 samples resulted in partially sequenced HEV, belonging to genotype 3, which was genetically identical to the HEV prevalent in the swine from the source farm. The infectious HEVs were isolated from the Norway rats by using the human A549 cell line. CONCLUSIONS: There was a relatively high prevalence (17.9%) of the HEV genome in wild Norway rats. The virus was mainly detected in the liver and spleen. The results indicate that these animals might be possible carrier of swine HEV in endemic regions. The HEV contamination risk due to rats needs to be examined in human habitats

    Object Transportation System Mimicking the Cilia of Paramecium aurelia Making Use of the Light-Controllable Crystal Bending Behavior of a Photochromic Diarylethene

    Get PDF
    The design of an object transportation system exploiting the bending behavior of surface-assembled diarylethene crystals is reported. A photoactuated smart surface based on this system can transport polystyrene beads to a desired area depending on the direction of the incident light. Two main challenges were addressed to accomplish directional motion along a surface: first, the preparation of crystals whose bending behavior depends on the direction of incident light; second, the preparation of a film on which these photochromic crystal plates are aligned. Nuclei generation and nuclear growth engineering were achieved by using a roughness-controlled dotted microstructured substrate. This system demonstrates how to achieve a mechanical function as shown by remote-controlled motion along a surface

    Laser-driven multi-MeV high-purity proton acceleration via anisotropic ambipolar expansion of micron-scale hydrogen clusters

    Get PDF
    強力なレーザーを使ってエネルギーがそろった純度100%の陽子ビーム発生に成功 --レーザー駆動陽子ビーム加速器の実現へ向けて大きく前進--. 京都大学プレスリリース. 2022-10-13.Multi-MeV high-purity proton acceleration by using a hydrogen cluster target irradiated with repetitive, relativistic intensity laser pulses has been demonstrated. Statistical analysis of hundreds of data sets highlights the existence of markedly high energy protons produced from the laser-irradiated clusters with micron-scale diameters. The spatial distribution of the accelerated protons is found to be anisotropic, where the higher energy protons are preferentially accelerated along the laser propagation direction due to the relativistic effect. These features are supported by three-dimensional (3D) particle-in-cell (PIC) simulations, which show that directional, higher energy protons are generated via the anisotropic ambipolar expansion of the micron-scale clusters. The number of protons accelerating along the laser propagation direction is found to be as high as 1.6 ±0.3 × 10⁹/MeV/sr/shot with an energy of 2.8 ±1.9 MeV, indicating that laser-driven proton acceleration using the micron-scale hydrogen clusters is promising as a compact, repetitive, multi-MeV high-purity proton source for various applications

    Quantum Phase Transitions in the One-Dimensional S=1 Spin-Orbital Model: Implications for Cubic Vanadates

    Full text link
    We investigate ground-state properties and quantum phase transitions in the one-dimensional S=1 spin-orbital model relevant to cubic vanadates. Using the density matrix renormalization group, we compute the ground-state energy, the magnetization and the correlation functions for different values of the Hund's coupling JHJ_H and the external magnetic field. It is found that the magnetization jumps at a certain critical field, which is a hallmark of the field-induced first-order phase transition. The phase transition driven by JHJ_H is also of first order. We also consider how the lattice-induced ferro-type interaction between orbitals modifies the phase diagram, and discuss the results in a context of the first-order phase transition observed in YVO3_3 at 77K.Comment: 7 pages, 7 figur

    Impacts of a warming marginal sea on torrential rainfall organized under the Asian summer monsoon

    Get PDF
    Monsoonal airflow from the tropics triggers torrential rainfall over coastal regions of East Asia in summer, bringing flooding situations into areas of growing population and industries. However, impacts of rapid seasonal warming of the shallow East China Sea ECS and its pronounced future warming upon extreme summertime rainfall have not been explored. Here we show through cloudresolving atmospheric model simulations that observational tendency for torrential rainfall events over western Japan to occur most frequently in July cannot be reproduced without the rapid seasonal warming of ECS. The simulations also suggest that the future ECS warming will increase precipitation substantially in such an extreme event as observed in midJuly 2012 and also the likelihood of such an event occurring in June. A need is thus urged for reducing uncertainties in future temperature projections over ECS and other marginal seas for better projections of extreme summertime rainfall in the surrounding areas
    corecore