9,790 research outputs found

    Spectral Flow and Feigin-Fuks Parameter Space of N=4 Superconformal Algebras

    Full text link
    The parameter space of the Feigin-Fuks representations of the N=4 SU(2)k_k superconformal algebras is studied from the viewpoint of the specral flow. The η\eta phase of the spectral flow is nicely incorporated through twisted fermions and the spectral flow resulting from the inner automorphism of the N=4 superconformal algebras is explicitly shown to be operating as identiy relations among the generators. Conditions for the unitary representations are also investigated in our Feigin-Fuks parameter space.Comment: LaTeX file, 21 pages, 1 figure(ps file

    Phase diagram of the one-dimensional half-filled extended Hubbard model

    Full text link
    We study the ground state of the one-dimensional half-filled Hubbard model with on-site (nearest-neighbor) repulsive interaction UU (VV) and nearest-neighbor hopping tt. In order to obtain an accurate phase diagram, we consider various physical quantities such as the charge gap, spin gap, Luttinger-liquid exponents, and bond-order-wave (BOW) order parameter using the density-matrix renormalization group technique. We confirm that the BOW phase appears in a substantial region between the charge-density-wave (CDW) and spin-density-wave phases. Each phase boundary is determined by multiple means and it allows us to do a cross-check to demonstrate the validity of our estimations. Thus, our results agree quantitatively with the renormalization group results in the weak-coupling regime (U2tU \lesssim 2t), with the perturbation results in the strong-coupling regime (U6tU \gtrsim 6t), and with the quantum Monte Carlo results in the intermediate-coupling regime. We also find that the BOW-CDW transition changes from continuous to first order at the tricritical point (Ut,Vt)(5.89t,3.10t)(U_{\rm t}, V_{\rm t}) \approx (5.89t, 3.10t) and the BOW phase vanishes at the critical end point (Uc,Vc)(9.25t,4.76t)(U_{\rm c}, V_{\rm c}) \approx (9.25t, 4.76t).Comment: 4 pages, 5 figure

    The minimal B-L model naturally realized at TeV scale

    Full text link
    In a previous paper, we have proposed the minimal B-L extended standard model as a phenomenologically viable model that realizes the Coleman-Weinberg-type breaking of the electroweak symmetry. Assuming the classical conformal invariance and stability up to the Planck scale, we will show in this paper that the model naturally predicts TeV scale B-L breaking as well as a light standard-model singlet Higgs boson and light right-handed neutrinos around the same energy scale. We also study phenomenology and detectability of the model at the Large Hadron Collider (LHC) and the International Linear Collider (ILC).Comment: 24pages, 8figure

    Green's Function Method for Line Defects and Gapless Modes in Topological Insulators : Beyond Semiclassical Approach

    Full text link
    Defects which appear in heterostructure junctions involving topological insulators are sources of gapless modes governing the low energy properties of the systems, as recently elucidated by Teo and Kane [Physical Review B82, 115120 (2010)]. A standard approach for the calculation of topological invariants associated with defects is to deal with the spatial inhomogeneity raised by defects within a semiclassical approximation. In this paper, we propose a full quantum formulation for the topological invariants characterizing line defects in three-dimensional insulators with no symmetry by using the Green's function method. On the basis of the full quantum treatment, we demonstrate the existence of a nontrivial topological invariant in the topological insulator-ferromagnet tri-junction systems, for which a semiclassical approximation fails to describe the topological phase. Also, our approach enables us to study effects of electron-electron interactions and impurity scattering on topological insulators with spatial inhomogeneity which gives rise to the Axion electrodynamics responses.Comment: 15 pages, 3 figure

    Bulk superconducting phase with a full energy gap in the doped topological insulator Cu_xBi_2Se_3

    Full text link
    The superconductivity recently found in the doped topological insulator Cu_xBi_2Se_3 offers a great opportunity to search for a topological superconductor. We have successfully prepared a single-crystal sample with a large shielding fraction and measured the specific-heat anomaly associated with the superconductivity. The temperature dependence of the specific heat suggests a fully-gapped, strong-coupling superconducting state, but the BCS theory is not in full agreement with the data, which hints at a possible unconventional pairing in Cu_xBi_2Se_3. Also, the evaluated effective mass of 2.6m_e (m_e is the free electron mass) points to a large mass enhancement in this material.Comment: 4 pages, 3 figure

    Dilemma that cannot be resolved by biased quantum coin flipping

    Full text link
    We show that a biased quantum coin flip (QCF) cannot provide the performance of a black-boxed biased coin flip, if it satisfies some fidelity conditions. Although such a QCF satisfies the security conditions of a biased coin flip, it does not realize the ideal functionality, and therefore, does not fulfill the demands for universally composable security. Moreover, through a comparison within a small restricted bias range, we show that an arbitrary QCF is distinguishable from a black-boxed coin flip unless it is unbiased on both sides of parties against insensitive cheating. We also point out the difficulty in developing cheat-sensitive quantum bit commitment in terms of the uncomposability of a QCF.Comment: 5 pages and 1 figure. Accepted versio

    Quantum teleportation scheme by selecting one of multiple output ports

    Full text link
    The scheme of quantum teleportation, where Bob has multiple (N) output ports and obtains the teleported state by simply selecting one of the N ports, is thoroughly studied. We consider both deterministic version and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover, we consider two cases for each version: (i) the state employed for the teleportation is fixed to a maximally entangled state, and (ii) the state is also optimized as well as Alice's measurement. We analytically determine the optimal protocols for all the four cases, and show the corresponding optimal fidelity or optimal success probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of NN\to\infty. The entanglement properties of the teleportation scheme are also discussed.Comment: 14 pages, 4 figure

    Fourth-Order Perturbation Theory for the Half-Filled Hubbard Model in Infinite Dimensions

    Full text link
    We calculate the zero-temperature self-energy to fourth-order perturbation theory in the Hubbard interaction UU for the half-filled Hubbard model in infinite dimensions. For the Bethe lattice with bare bandwidth WW, we compare our perturbative results for the self-energy, the single-particle density of states, and the momentum distribution to those from approximate analytical and numerical studies of the model. Results for the density of states from perturbation theory at U/W=0.4U/W=0.4 agree very well with those from the Dynamical Mean-Field Theory treated with the Fixed-Energy Exact Diagonalization and with the Dynamical Density-Matrix Renormalization Group. In contrast, our results reveal the limited resolution of the Numerical Renormalization Group approach in treating the Hubbard bands. The momentum distributions from all approximate studies of the model are very similar in the regime where perturbation theory is applicable, U/W0.6U/W \le 0.6. Iterated Perturbation Theory overestimates the quasiparticle weight above such moderate interaction strengths.Comment: 19 pages, 17 figures, submitted to EPJ
    corecore