9 research outputs found

    Two-Dimensional Ca<sub>2</sub>Nb<sub>3</sub>O<sub>10</sub> Perovskite Nanosheets for Electron Injection Layers in Organic Light-Emitting Devices

    No full text
    We report in this article the application of calcium niobate (CNO) perovskite nanosheets for electron injection layers (EILs) in organic light-emitting devices (OLEDs). Four kinds of tetraalkylammonium hydroxides having different alkyl lengths were utilized as the exfoliation agents of a layered compound precursor HCa<sub>2</sub>Nb<sub>3</sub>O<sub>10</sub> to synthesize CNO nanosheets, including tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide (TPAOH), and tetrabutylammonium hydroxide. CNO nanosheet EILs were applied in fluorescent poly­[(9,9-di-<i>n</i>-octylfluorenyl-2,7-diyl)-<i>alt</i>-(benzo­[2,1,3]­thiadiazol-4,8-diyl)] (F8BT) organic light-emitting polymer-based devices. The effects of dispersion concentrations and alkyl chain length on the devices’ performances were investigated. The results demonstrated that OLEDs’ performances were related to the coverage ratio of the CNO nanosheets, their thicknesses, and their work function values. Among the four exfoliation agents, the device with CNO nanosheets exfoliated by TPAOH showed the lowest driving voltage. The OLEDs with the CNO nanosheet EILs showed lower driving voltages compared with the devices with conventional EIL material lithium 8-quinolate

    A Solution-Processed Heteropoly Acid Containing MoO<sub>3</sub> Units as a Hole-Injection Material for Highly Stable Organic Light-Emitting Devices

    No full text
    We report hole-injection layers (HILs) comprising a heteropoly acid containing MoO<sub>3</sub> units, phosphomolybdic acid (PMA), in organic light-emitting devices (OLEDs). PMA possesses outstanding properties, such as high solubility in organic solvents, very low surface roughness in the film state, high transparency in the visible region, and an appropriate work function (WF), that make it suitable for HILs. We also found that these properties were dependent on the postbaking atmosphere and temperature after film formation. When the PMA film was baked in N<sub>2</sub>, the Mo in the PMA was reduced to Mo­(V), whereas baking in air had no influence on the Mo valence state. Consequently, different baking atmospheres yielded different WF values. OLEDs with PMA HILs were fabricated and evaluated. OLEDs with PMA baked under appropriate conditions exhibited comparably low driving voltages and higher driving stability compared with OLEDs employing conventional hole-injection materials (HIMs), poly­(3,4-ethylene­dioxy­thiophene):poly­(4-styrene­sulfonate), and evaporated MoO<sub>3</sub>, which clearly shows the high suitability of PMA HILs for OLEDs. PMA is also a commercially available and very cheap material, leading to the widespread use of PMA as a standard HIM

    Molecular Interdiffusion between Stacked Layers by Solution and Thermal Annealing Processes in Organic Light Emitting Devices

    No full text
    In organic light emitting devices (OLEDs), interfacial structures between multilayers have large impacts on the characteristics of OLEDs. Herein, we succeeded in revealing the interdiffusion in solution processed and thermal annealed OLEDs by neutron reflectometry. We investigated interfaces between a polymer under layer and small molecules upper layer. The small molecules diffused into the swollen polymer layer during the interfacial formation by the solution process, but the polymer did not diffuse into the small molecules layer. At temperatures close to the glass transition temperatures of the materials, asymmetric molecular diffusion was observed. We elucidated the effects of the interdiffusion on the characteristics of OLEDs. Partially mixing the interface improved the current efficiencies due to suppressed triplet-polaron quenching at the interface. Controlling and understanding the interfacial structures of the miultilayers will be more important to improve the OLED characteristics

    Efficient Electron Injection by Size- and Shape-Controlled Zinc Oxide Nanoparticles in Organic Light-Emitting Devices

    No full text
    Three different sized zinc oxide (ZnO) nanoparticles were synthesized as spherical ZnO (S-ZnO), rodlike ZnO (R-ZnO), and intermediate shape and size ZnO (I-ZnO) by controlling the reaction time. The average sizes of the ZnO nanoparticles were 4.2 nm Ă— 3.4 nm for S-ZnO, 9.8 nm Ă— 4.5 nm for I-ZnO, and 20.6 nm Ă— 6.2 nm for R-ZnO. Organic light-emitting devices (OLEDs) with these ZnO nanoparticles as the electron injection layer (EIL) were fabricated. The device with I-ZnO showed lower driving voltage and higher power efficiency than those with S-ZnO and R-ZnO. The superiority of I-ZnO makes it very effective as an EIL for various types of OLEDs regardless of the deposition order or method of fabricating the organic layer, the ZnO layer, and the electrode

    Colorful Squaraines Dyes for Efficient Solution-Processed All Small-Molecule Semitransparent Organic Solar Cells

    No full text
    Semitransparent organic solar cells (ST-OSCs) exhibit highly promising applications to develop integrated photovoltaics and power-generating windows. However, the development of ST-OSCs is significantly lagging behind opaque OSCs, especially for all small-molecule ST-OSCs. Here, four unique squaraines dyes (IDPSQ, SQ-BP, D-BDT-SQ, and AzUSQ) were successfully used as donors in ST-OSCs, whose colors can be tuned from purple to blue, green, and dark green, respectively. While using ultrathin Ag as a transparent electrode, the ST-OSCs fabricated using IDPSQ:PC<sub>71</sub>BM, SQ-BP:PC<sub>71</sub>BM, D-BDT-SQ:PC<sub>71</sub>BM, and AzUSQ:PC<sub>71</sub>BM yield power conversion efficiencies (PCEs) of 2.96, 4.36, 4.91, and 1.71%, respectively, and their colors are purple, cyan, brown, and light brown, respectively. Compared to their opaque OSCs (PCEs of 3.95, 5.45, 5.84, and 1.91%, respectively), the reduction in the PCEs are as low as 25, 20, 16, and 10%, respectively. Furthermore, each of these ST-OSCs exhibit good average visible transmittance (AVT) of 25–30%, favorable CIE color coordinates, and a color rendering index (CRI) of 71–97%. Finally, by changing the thickness of the Ag electrode, an impressive PCE of 4.9% along with an AVT of 25% and a CRI of 97% can be obtained in D-BDT-SQ:PC<sub>71</sub>BM-based ST-OSCs, which is the highest PCE among all small-molecule ST-OSCs

    High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment

    No full text
    All inorganic perovskites quantum dots (PeQDs) have attracted much attention for used in thin film display applications and solid-state lighting applications, owing to their narrow band emission with high photoluminescence quantum yields (PLQYs), color tunability, and solution processability. Here, we fabricated low-driving-voltage and high-efficiency CsPbBr<sub>3</sub> PeQDs light-emitting devices (PeQD-LEDs) using a PeQDs washing process with an ester solvent containing butyl acetate (AcOBu) to remove excess ligands from the PeQDs. The CsPbBr<sub>3</sub> PeQDs film washed with AcOBu exhibited a PLQY of 42%, and a narrow PL emission with a full width at half-maximum of 19 nm. We also demonstrated energy level alignment of the PeQD-LED in order to achieve effective hole injection into PeQDs from the adjacent hole injection layer. The PeQD-LED with AcOBu-washed PeQDs exhibited a maximum power efficiency of 31.7 lm W<sup>–1</sup> and EQE of 8.73%. Control of the interfacial PeQDs through ligand removal and energy level alignment in the device structure are promising methods for obtaining high PLQYs in film state and high device efficiency

    A Series of Lithium Pyridyl Phenolate Complexes with a Pendant Pyridyl Group for Electron-Injection Layers in Organic Light-Emitting Devices

    No full text
    We report a new series of lithium pyridyl phenolate complexes with a pendant pyridyl group, Li2BPP, Li3BPP, and Li4BPP, in which the pendant pyridines are substituted at the 2-, 3-, and 4-positions, respectively. The most important difference between these complexes is their molecular planarity; Li3BPP and Li4BPP adopt twisted bipyridine structures, whereas Li2BPP adopts a planar structure owing to the steric hindrance and chelating effect of bipyridine on the Li core. The planar structure leads to crystallization through π–π stacking interactions, and the small differences in the molecular structures of the pendant pyridine rings cause drastic differences in the physical properties of thin solid films of these complexes. We applied these complexes as electron-injection layers (EILs) in Ir­(ppy)<sub>3</sub>-based organic light-emitting devices. When thin EILs were used, Li3BPP and Li4BPP afforded lower driving voltages than Li2BPP; the order of the driving voltages followed the order of their electron affinity values. Moreover, the dependence of driving voltage on the EIL thickness was investigated for each complex. Among the three LiBPP derivatives, Li2BPP-based devices showed almost negligible EIL thickness dependence, which may be attributable to the high crystallinity of Li2BPP. All LiBPP-based devices also showed higher stability than conventional 8-quinolinolato lithium-based devices

    Addition of Lithium 8‑Quinolate into Polyethylenimine Electron-Injection Layer in OLEDs: Not Only Reducing Driving Voltage but Also Improving Device Lifetime

    No full text
    Solution-processed electron injection layers (EILs) comprising lithium 8-quinolate (Liq) and polyethyl­enimine ethoxylated (PEIE) are highly effective for enhancing electron injection from ZnO to organic layers and improving device lifetime in organic light-emitting devices (OLEDs). Doping of Liq into PEIE further reduces the work function of zinc oxide (ZnO) by enhancing dipole formation. The intermolecular interaction between Liq and PEIE was elucidated by UV–vis absorption measurement and quantum chemical calculation. The OLEDs with ZnO covered with PEIE:Liq mixture exhibited lower driving voltage than that of the device without Liq. Furthermore, as doping concentration of Liq into PEIE increased, the device lifetime and voltage stability during constant current operation was successively improved

    Conjugated Polyelectrolyte Blend with Polyethyleneimine Ethoxylated for Thickness-Insensitive Electron Injection Layers in Organic Light-Emitting Devices

    No full text
    Electron injection layers (EILs) based on a simple polymer blend of polyethyleneimine ethoxylated (PEIE) and poly­[(9,9-bis­(3′-((<i>N</i>,<i>N</i>-dimethyl)-<i>N</i>-ethylammonium)-propyl)-2,7-fluorene)-<i>alt</i>-2,7-(9,9-dioctylfluorene)] (PFN-Br) can suppress the dependence of organic light-emitting device (OLED) performance on thickness variation compared with single PEIE or PFN-Br EILs. PEIE and PFN-Br were compatible with each other and PFN-Br uniformly mixed in the PEIE matrix. PFN-Br in PEIE formed more fluorene–fluorene pairs than PFN-Br alone. In addition, PEIE:PFN-Br blends reduced the work function (WF) substantially compared with single PEIE or PFN-Br polymer. PEIE:PFN-Br blends were applied to EILs in fluorescent polymer-based OLEDs. Optimized PEIE:PFN-Br blend EIL-based devices presented lower driving voltages and smaller dependences of device performance on EIL thickness than single PEIE or PFN-Br-based devices. These improvements were attributed to electron-transporting fluorene moieties, increased fluorene–fluorene pairs working as channels of electron transport, and the large WF reduction effect of PEIE:PFN-Br blends
    corecore