36 research outputs found

    Replica-Exchange Method in van der Waals Radius Space: Overcoming Steric Restrictions for Biomolecules

    Full text link
    We present a new type of the Hamiltonian replica-exchange method, in which not temperatures but the van der Waals radius parameter is exchanged. By decreasing the van der Waals radii that control spatial sizes of atoms, this Hamiltonian replica-exchange method overcomes the steric restrictions and energy barriers. Furthermore, the simulation based on this method escapes from the local-minimum free-energy states and realizes effective sampling in the conformational space. We applied this method to an alanine dipeptide in aqueous solution and showed the effectiveness of the method by comparing the results with those obtained from the conventional canonical method.Comment: 14 pages, (Revtex4), 11 figure

    Effective Sampling in the Configurational Space by the Multicanonical-Multioverlap Algorithm

    Full text link
    We propose a new generalized-ensemble algorithm, which we refer to as the multicanonical-multioverlap algorithm. By utilizing a non-Boltzmann weight factor, this method realizes a random walk in the multi-dimensional, energy-overlap space and explores widely in the configurational space including specific configurations, where the overlap of a configuration with respect to a reference state is a measure for structural similarity. We apply the multicanonical-multioverlap molecular dynamics method to a penta peptide, Met-enkephalin, in vacuum as a test system. We also apply the multicanonical and multioverlap molecular dynamics methods to this system for the purpose of comparisons. We see that the multicanonical-multioverlap molecular dynamics method realizes effective sampling in the configurational space including specific configurations more than the other two methods. From the results of the multicanonical-multioverlap molecular dynamics simulation, furthermore, we obtain a new local-minimum state of the Met-enkephalin system.Comment: 15 pages, (Revtex4), 9 figure

    Histological Remission during Corticosteroid Therapy of Overlapping Nonalcoholic Steatohepatitis and Autoimmune Hepatitis: Case Report and Literature Review

    Get PDF
    Concurrence of nonalcoholic steatohepatitis (NASH) with autoimmune hepatitis (AIH) is a rare condition that is challenging to diagnosis, due to the relatively high prevalence of autoantibodies in NASH. It is also difficult to determine the most effective treatment as corticosteroids are likely to worsen NASH despite being effective in the treatment of AIH. In this case report, we present a female diagnosed with NASH-AIH overlap with accompanying diabetes mellitus, who successfully achieved normalization of serum alanine aminotransferase levels following prednisolone therapy and weight loss. A follow-up liver biopsy performed 40 months after the initial diagnosis showed only minimal inflammatory infiltrates in the portal area without any NASH histology. Resolution of NASH, in conjunction with a reduction in hepatic fibrosis, might suggest that prednisolone itself does not aggravate steatohepatitis, but rather prevents disease progression. Appropriate immunosuppressive treatment may therefore be an important component of the optimum therapy for NASH-AIH overlap

    Involvement of SIK3 in Glucose and Lipid Homeostasis in Mice

    Get PDF
    Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3−/− mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3−/− mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3−/− mice. Lipid metabolism disorders in Sik3−/− mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Promotion and Inhibition of Amyloid-β Peptide Aggregation: Molecular Dynamics Studies

    No full text
    Aggregates of amyloid-β (Aβ) peptides are known to be related to Alzheimer’s disease. Their aggregation is enhanced at hydrophilic–hydrophobic interfaces, such as a cell membrane surface and air-water interface, and is inhibited by polyphenols, such as myricetin and rosmarinic acid. We review molecular dynamics (MD) simulation approaches of a full-length Aβ peptide, Aβ40, and Aβ(16–22) fragments in these environments. Since these peptides have both hydrophilic and hydrophobic amino acid residues, they tend to exist at the interfaces. The high concentration of the peptides accelerates the aggregation there. In addition, Aβ40 forms a β-hairpin structure, and this structure accelerates the aggregation. We also describe the inhibition mechanism of the Aβ(16–22) aggregation by polyphenols. The aggregation of Aβ(16–22) fragments is caused mainly by the electrostatic attraction between charged amino acid residues known as Lys16 and Glu22. Since polyphenols form hydrogen bonds between their hydroxy and carboxyl groups and these charged amino acid residues, they inhibit the aggregation
    corecore