18 research outputs found

    Changes in Postoperative Analgesia

    Get PDF
    Postoperative pain management has changed with the evolution of surgical techniques. Epidural anesthesia was a very useful method of postoperative analgesia when laparotomy or thoracotomy was performed by making a large skin incision in the abdomen or chest. Nowadays, surgeries are often performed through very small skin incisions using laparoscopy or thoracoscopy. Furthermore, surgeries are often performed on elderly patients, and in many patients, anticoagulants are used in preoperative period and continued during intraoperative period or started early in postoperative period, and there are concerns that epidural anesthesia cannot be performed, or that epidural anesthesia may delay the start of early postoperative anticoagulation in such patients; hence, there is a tendency to avoid epidural anesthesia. In such cases, intravenous administration of patient-controlled analgesia (PCA) fentanyl is an effective method of postoperative analgesia. We will discuss the advantages and disadvantages of intravenous (IV)PCA and epidural anesthesia and also the combined use of peripheral nerve blocks, which has been in the spotlight in recent years. Early postoperative mobilization is useful in preventing muscle weakness and delirium. What we require today are postoperative analgesics that provide rapid postoperative recovery and do not cause nausea and vomiting

    ERK2 alone drives inflammatory pain but cooperates with ERK1 in sensory neuron survival

    Get PDF
    Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are highly homologous yet distinct components of signal transduction pathways known to regulate cell survival and function. Recent evidence indicates an isoform-specific role for ERK2 in pain processing and peripheral sensitization. However, the function of ERK2 in primary sensory neurons has not been directly tested. To dissect the isoform-specific function of ERK2 in sensory neurons, we used mice with Cre-loxP-mediated deletion of ERK2 in Na(v)1.8(+) sensory neurons that are predominantly nociceptors. We find that ERK2, unlike ERK1, is required for peripheral sensitization and cold sensation. We also demonstrate that ERK2, but not ERK1, is required to preserve epidermal innervation in a subset of peptidergic neurons. Additionally, deletion of both ERK isoforms in Na(v)1.8(+) sensory neurons leads to neuron loss not observed with deletion of either isoform alone, demonstrating functional redundancy in the maintenance of sensory neuron survival. Thus, ERK1 and ERK2 exhibit both functionally distinct and redundant roles in sensory neurons. SIGNIFICANCE STATEMENT ERK1/2 signaling affects sensory neuron function and survival. However, it was not clear whether ERK isoform-specific roles exist in these processes postnatally. Previous work from our laboratory suggested either functional redundancy of ERK isoforms or a predominant role for ERK2 in pain; however, the tools to discriminate between these possibilities were not available at the time. In the present study, we use new genetic knock-out lines to demonstrate that ERK2 in sensory neurons is necessary for development of inflammatory pain and for postnatal maintenance of peptidergic epidermal innervation. Interestingly, postnatal loss of both ERK isoforms leads to a profound loss of sensory neurons. Therefore, ERK1 and ERK2 display both functionally distinct and redundant roles in sensory neurons

    Ketamine Anesthesia in Electroconvulsive Therapy

    No full text
    Electroconvulsive therapy (ECT) is highly effective both Major Depressive Disorder (MDD) and Bipolar Disorder (BD). Ketamine, an antagonist of the N-Methyl-D-aspartate receptor, has been described to have antidepressant properties. There is a hypothesis that ECT performed with anesthesia using ketamine is more effective than conventional ECT. Also, although ECT is the gold standard for BD and MDD, there are questions about which is more effective, ketamine treatment or ECT, and whether ketamine is more effective when used in combination with ECT. In this chapter, we review the current literature on the effectiveness of ECT and ketamine. Furthermore, we discuss whether ketamine can be an alternative treatment to ECT for patients with TRD

    Sugammadex-Enhanced Neuronal Apoptosis following Neonatal Sevoflurane Exposure in Mice

    No full text
    In rodents, neonatal sevoflurane exposure induces neonatal apoptosis in the brain and results in learning deficits. Sugammadex is a new selective neuromuscular blockade (NMB) binding agent that anesthesiologists can use to achieve immediate reversal of an NMB with few side effects. Given its molecular weight of 2178, sugammadex is thought to be unable to pass through the blood brain barrier (BBB). Volatile anesthetics can influence BBB opening and integrity. Therefore, we investigated whether the intraperitoneal administration of sugammadex could exacerbate neuronal damage following neonatal 2% sevoflurane exposure via changes in BBB integrity. Cleaved caspase-3 immunoblotting was used to detect apoptosis, and the ultrastructure of the BBB was examined by transmission electron microscopy. Exposure to 2% sevoflurane for 6 h resulted in BBB ultrastructural abnormalities in the hippocampus of neonatal mice. Sugammadex alone without sevoflurane did not induce apoptosis. The coadministration of sugammadex with sevoflurane to neonatal mice caused a significant increase (150%) in neuroapoptosis in the brain compared with 2% sevoflurane. In neonatal anesthesia, sugammadex could influence neurotoxicity together with sevoflurane. Exposure to 2% sevoflurane for 6 h resulted in BBB ultrastructural abnormalities in the hippocampus of neonatal mice

    The Influence of Differences in Solvents and Concentration on the Efficacy of Propofol at Induction of Anesthesia

    Get PDF
    Background. Propofol is a popular intravenous anesthetic and varieties of formulations were produced from different laboratories. The present study compared efficacy of propofol of different laboratories and different concentrations (1 and 2%) during induction of anesthesia. Methods. Seventy-five scheduled surgical patients were randomly allocated into three groups. The patients of group D1 received AstraZeneca Diprivan 1% (Osaka, Japan) at a rate of 40 mg kg−1 h−1. Group M1 was given 1% Maruishi (Maruishi Pharmaceutical, Osaka, Japan) and group M2 was given 2% formulation at the same rate of propofol. Achieving hypnosis was defined as failure to open their eyes in response to a verbal command and the venous blood sample was withdrawn. Results. The hypnotic doses of M2 were significantly larger (D1: 91.4±30.9, M1: 90.7±26.7, and M2: 118.4±40.2 mg, resp. (mean ± SD). p<0.005). Age and gender were selected as statistically significant covariates using general linear model-ANOVA. The blood concentration showed no significant difference among the groups (3.73±2.34, 4.10±3.04, and 4.70±2.12 μg mL−1, resp.). Conclusion. The required dose of propofol was different among the formulations; however, the serum concentration showed no significant difference. This trial is registered with UMIN Clinical Trial Registry: UMIN000019925
    corecore