125 research outputs found

    Cell-type-specific epigenetic marking of the IL2 gene at a distal cis-regulatory region in competent, nontranscribing T-cells

    Get PDF
    T-cells retain cell-type-specific programming for IL-2 inducibility through many rounds of division without being stimulated to transcribe the locus. To understand the layering of controls needed to poise this gene heritably for activation, we have used chromatin immunoprecipitation to map histone modifications across the murine IL2 locus, from −10.2 through +0.25 kb, in induction-competent and incompetent cells. In highly inducible EL4 T-lineage cells, stimulation with PMA/A23187 induced strong acetylation of histone H3 and H4, in parallel with transcriptional activation, from −4.6 through +0.25 kb. However, dimethylation of histone H3/K4 was already fully elevated across the same restricted domain before stimulation, with little change after stimulation. RNA polymerase II binding, in contrast, was only found at the known promoter region after stimulation. Similar patterns of histone modifications were seen also in normal IL-2-inducible T-lineage cells. However, neither acetylated histone H3, H4 nor dimethylated histone H3/K4 marking was detected, with or without stimulation, in expression-incompetent cells (NIH/3T3 or Scid.adh). These results identify a discrete new domain of IL2 regulatory sequence marked by dimethylated histone H3/K4 in expression-permissive T-cells even when they are not transcribing IL2, setting boundaries for histone H3 and H4 acetylation when the IL2 gene is transcriptionally activated

    Associations between dietary n-6 and n-3 fatty acids and arachidonic acid compositions in plasma and erythrocytes in young and elderly Japanese volunteers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We reported that the compositions of arachidonic acid (ARA) in erythrocytes and plasma phospholipids (PL) in the elderly were lower than those in the young, though the ARA intake was nearly identical.</p> <p>Objective</p> <p>We further analyzed data in four study groups with different ages and sexes, and determined that the blood ARA levels were affected by the kinds of dietary fatty acids ingested.</p> <p>Methods</p> <p>One hundred and four healthy young and elderly volunteers were recruited. Dietary records together with photographic records from 28 consecutive days were reviewed and the fatty acid composition in plasma lipid fractions and erythrocyte PL was analyzed.</p> <p>Results</p> <p>No correlations for ARA between dietary fatty acids and blood lipid fractions were observed. A significant negative correlation between eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) intake and ARA composition in erythrocyte PL was observed. ARA composition in erythrocyte PL was significantly lower in elderly subjects than in young subjects, because EPA and DHA intake in elderly subjects was higher than in young subjects. However, after removing the effect of dietary EPA+DHA intake, the ARA composition in erythrocyte PL in elderly subjects was significantly lower than that in young subjects.</p> <p>Conclusions</p> <p>Changes in physical conditions with aging influenced the low ARA composition of erythrocyte in elderly subjects in addition to the effects of dietary EPA and DHA.</p

    PIM kinases facilitate lentiviral evasion from SAMHD1 restriction via Vpx phosphorylation

    Get PDF
    Lentiviruses have evolved to acquire an auxiliary protein Vpx to counteract the intrinsic host restriction factor SAMHD1. Although Vpx is phosphorylated, it remains unclear whether such phosphorylation indeed regulates its activity toward SAMHD1. Here we identify the PIM family of serine/threonine protein kinases as the factors responsible for the phosphorylation of Vpx and the promotion of Vpx-mediated SAMHD1 counteraction. Integrated proteomics and subsequent functional analysis reveal that PIM family kinases, PIM1 and PIM3, phosphorylate HIV-2 Vpx at Ser13 and stabilize the interaction of Vpx with SAMHD1 thereby promoting ubiquitin-mediated proteolysis of SAMHD1. Inhibition of the PIM kinases promotes the antiviral activity of SAMHD1, ultimately reducing viral replication. Our results highlight a new mode of virus–host cell interaction in which host PIM kinases facilitate promotion of viral infectivity by counteracting the host antiviral system, and suggest a novel therapeutic strategy involving restoration of SAMHD1-mediated antiviral response

    a proton pump inhibitor, mediates anti-inflammatory effect in gastric mucosal cells through the induction of heme oxygenase-1 via activation of NF-E2-related factor 2 and oxidation of kelch-like ECH-associating protein 1

    Get PDF
    ABSTRACT Induction of heme oxygenase-1 (HO-1) expression has been associated with cytoprotective and anti-inflammatory actions of lansoprazole, a proton pump inhibitor, but the underlying molecular mechanisms remain largely unresolved. In this study, we investigate the role of transcriptional NF-E2-related factor 2 (Nrf2), its phosphorylation/activation, and oxidation of Kelch-like ECHassociating protein 1 (Keap1) in lansoprazole-induced HO-1 up-regulation using cultured gastric epithelial cells (rat gastric mucosal cell line, RGM-1). HO-1 expression of RGM-1 cells was markedly enhanced in a time-and dose-dependent manner by the treatment with lansoprazole, and this up-regulation of HO-1 contributed to the inhibition of chemokine production from stimulated RGM-1 cells. Transfection of Nrf2-siRNA suppressed the lansoprazole-induced HO-1. An electrophoretic mobility shift assay showed increases in the nuclear translocation and stress-response elements (StRE) binding activity of Nrf2 proteins in RGM-1 cells treated with lansoprazole. Furthermore, in RGM-1 cells transfected with HO-1 enhancer luciferase reporter plasmid containing mutant StRE, lansoprazole-induced HO-1 reporter gene activity was diminished. Lansoprazole promoted the phosphorylation of extracellular signal-regulated kinase (ERK), and lansoprazole-induced HO-1 up-regulation was suppressed by U0126, an ERKspecific inhibitor. Phosphorylated Nrf2 protein was detected in the phosphoprotein fraction purified by a Pro-Q Diamond Phosphoprotein Enrichment kit. Finally, an oxidative form of the Keap1 protein was detected in lansoprazole-treated RGM-1 cells by analyzing S-oxidized proteins using biotinylated cysteine as a molecular probe. These results indicate that lansoprazole up-regulates HO-1 expression in rat gastric epithelial cells, and the upregulated HO-1 contributes to the anti-inflammatory effects of the drug. Phosphorylation of ERK and Nrf2, activation and nuclear translocation of Nrf2, and oxidation of Keap1 are all involved in the lansoprazole-induced HO-1 up-regulation. Proton pump inhibitors (PPIs) such as lansoprazole and omeprazole are extensively used to treat acid-related disorders, including gastroesophageal reflux disease and peptic ulcer disease caused by stress, nonsteroidal anti-inflammatory drugs, and Helicobacter pylori infection. PPIs are stron

    The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function

    Get PDF
    Shortening and removal of the polyadenylate [poly(A)] tail of mRNA, a process called deadenylation, is a key step in mRNA decay that is mediated through the CCR4-NOT (carbon catabolite repression 4-negative on TATA-less) complex. In our investigation of the regulation of mRNA deadenylation in the heart, we found that this complex was required to prevent cell death. Conditional deletion of the CCR4-NOT complex components Cnot1 or Cnot3 resulted in the formation of autophagic vacuoles and cardiomyocyte death, leading to lethal heart failure accompanied by long QT intervals. Cnot3 bound to and shortened the poly(A) tail of the mRNA encoding the key autophagy regulator Atg7. In Cnot3-depleted hearts, Atg7 expression was posttranscriptionally increased. Genetic ablation of Atg7, but not Atg5, increased survival and partially restored cardiac function of Cnot1 or Cnot3 knockout mice. We further showed that in Cnot3-depleted hearts, Atg7 interacted with p53 and modulated p53 activity to induce the expression of genes encoding cell death-promoting factors in cardiomyocytes, indicating that defects in deadenylation in the heart aberrantly activated Atg7 and p53 to promote cell death. Thus, mRNA deadenylation mediated by the CCR4-NOT complex is crucial to prevent Atg7-induced cell death and heart failure, suggesting a role for mRNA deadenylation in targeting autophagy genes to maintain normal cardiac homeostasis

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore