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Abstract 

Shortening and removal of the polyadenylate (poly(A)) tail of mRNA, a process called 

deadenylation, is a key step in mRNA decay mediated through the CCR4-NOT 

(Carbon catabolite repression 4-negative on TATA-less) complex. In our investigation 

of the regulation of mRNA deadenylation in the heart, we found that this complex was 

required to prevent cell death in the heart. Conditional deletion of the CCR4-NOT 

complex components Cnot1 or Cnot3 resulted in the formation of autophagic vacuoles 

and cardiomyocyte death, leading to lethal heart failure accompanied with long QT 

intervals. Cnot3 bound to and shortened the poly(A) tail of the mRNA encoding the 

key autophagy regulator Atg7. In Cnot3-depleted hearts, Atg7 expression was post-

transcriptionally increased. Genetic ablation of Atg7, but not that of Atg5, increased 

survival and partially restored cardiac function of Cnot1 or Cnot3 knockout mice. We 

further showed that in Cnot3-depleted hearts, Atg7 interacted with p53 and modulated 

p53 activity to induce the expression of genes encoding cell death-promoting factors in 

cardiomyocytes, indicating that defects in deadenylation in the heart aberrantly 

activated Atg7 and p53 to promote cell death. Thus, mRNA deadenylation mediated 

by the CCR4-NOT complex is crucial to prevent Atg7-induced cell death and heart 

failure, suggesting a role for mRNA deadenylation in targeting autophagy genes to 

maintain normal cardiac homeostasis. 
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Introduction 

Cardiovascular diseases are leading causes of death in developed countries. 

Coordinated transcriptional and post-transcriptional regulation of gene expression is 

important to maintain normal heart physiology. Dysregulation in this coordination 

causes and/or accompanies multiple pathologies, such as cardiomyopathy and 

myocardial infarction. In post-transcriptional regulation, the exonuclease-mediated 

degradation of the mRNA poly(A) tail, a process called deadenylation, is a key step in 

regulated mRNA degradation, which contributes to determining the quality and 

quantity of translatable mRNAs (1, 2). Deadenylation is mediated by the CCR4-NOT 

complex, which is recruited to mRNA by RNA-binding proteins (RBPs) or the miRNA 

repression complex, mainly by its scaffold subunit CNOT1. Following recruitment, the 

CCR4-NOT complex catalyzes degradation of poly(A) through the two exonuclease 

subunits (CNOT6 (or CNOT6L) and CNOT7 (or CNOT8)) thereby regulating gene 

expression (1-4).  We have previously identified CNOT3, a scaffold subunit of the 

CCR4-NOT complex, as a conserved regulator of heart function in Drosophila and 

mouse (5). Moreover, genome wide association studies showed a strong association 

between SNPs in CNOT1 or CNOT3 and prolonged QT intervals in humans (5-7). The 

underlying mechanisms how the CCR4-NOT complex controls heart functions 

remained, however, elusive. 

 

Autophagy is an evolutionally conserved mechanism in which lysosomes degrade 

cellular components and organelles, and this mechanism plays a crucial role in 

maintaining cellular energetics by recycling amino acids and fatty acids for energy 
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production (8, 9). Autophagy can be protective and is generally beneficial in the heart 

under basal conditions and in response to stress, such as pressure overload and 

ischemic injury (10, 11). However, the activation of autophagy in some heart 

pathologies induces autophagic cell death or cell death through excessive autophagy 

(12, 13). There are several molecular and functional interactions between autophagy 

and apoptosis or necrosis/necroptosis (12, 14, 15). In Drosophila, genetic disruption of 

CPEB1, a CCR4-NOT-interacting RBP, enhances autophagic cell death in oocytes 

through impaired deadenylation and enhanced translation of ATG12 mRNA (16), 

suggesting functional interactions between mRNA deadenylation and autophagy. 

 

The core autophagic machinery is composed of ATG components, which contribute to 

autophagosome formation and the subsequent fusion of autophagosomes with 

lysosomes to degrade substrates. Atg7 is an ubiquitin E1-like activating enzyme which 

is involved in two ubiquitin like conjugation systems: covalent attachment of Atg12 to 

Atg5 and Atg16-like 1 (Atg16l1) and of phosphatidylethanolamine to microtubule-

associated protein 1 light chain 3 (Map1lc3 or LC3) in autophagosome formation(9). 

Several autophagy gene products have also non-autophagic functions, such as the 

proteolytic isoform of Atg5, which induces apoptosis (17); the interaction of Beclin-1 

with Bcl-2 (18), which suppresses apoptosis; and the regulation of p53 transcriptional 

activity by Atg7 (19). Here we report that in vivo inactivation of CCR4-NOT complex 

resulted in altered mRNA deadenylation of the key autophagy regulator Atg7, resulting 

in cardiomyocyte death and heart failure. 
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Results 

Loss of muscle Cnot3 leads to lethal cardiomyopathy 

We have previously generated whole body Cnot3 mutant mice that exhibit embryonic 

lethality and reported that whole body Cnot3 heterozygote mice develop heart failure 

(5). To directly examine the role of Cnot3 in cardiac muscle, we generated a Cnot3 

floxed allele through homologous recombination in ES cells (Fig. S1A). After germline 

transmission, Cnot3 floxed mice were crossed with Ckmm-Cre Tg mice, which 

express Cre recombinase under the muscle creatine kinase promoter (Fig. 1A, Fig. 

S1B-D). Mice that lack Cnot3 gene expression in hearts and skeletal muscles are 

hereafter referred to as ‘Cnot3 mKO’ mice. At around 3 weeks of age, Cnot3 mKO 

mice started to die and all of these mice were dead by 30 days after birth (Fig. 1B). 

Despite the loss of Cnot3 protein in skeletal muscle (Fig. S1C), the skeletal muscles of 

Cnot3 mKO mice appeared normal and the body weights of Cnot3 mKO mice were 

comparable to those of wild-type littermate mice (Fig. S1E). However, Cnot3 mKO 

mice had substantially enlarged and dilated hearts (Fig. 1C) that weighed more (Fig. 

1D). 

 

Echocardiography of Cnot3 mKO mice showed severe cardiac contractility defects as 

assessed by fractional shortening (Fig. 1E), which was accompanied by long QT 

intervals and various arrhythmic changes as detected by ECG analysis (Fig. 1F, Fig. 

S1F). Histological analysis of Cnot3 mKO mouse hearts revealed focal areas of dead 

cardiomyocytes with reduced cytoplasmic contents and vacuole formation (Fig. 1G). In 

addition, immunohistochemistry showed reduced myofibrils in Cnot3 mKO mouse 
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hearts (Fig. 1H), consistent with our previous observation of myofibrillar disarray in the 

heart tubes of not3 RNAi Drosophila lines (5). Cnot3 floxed mice were crossed with 

MHC-MerCreMer Tg mice to induce cardiac muscle specific deletion of Cnot3 at 3 

month of age by tamoxifen treatment (Cnot3 cKO); adult mice with induced Cnot3 

deletion developed lethal heart failure with the same structural and functional 

alterations as those in the young Cnot3 mKO mice (Fig. S2A-F). Thus, muscle specific 

deletion of Cnot3 leads to structural and functional heart defects, ultimately resulting in 

lethal cardiomyopathy. 

 

The CCR4-NOT complex is essential for cardiac homeostasis 

Cnot3 is a subunit of the CCR4-NOT complex, and as expected from previous in vitro 

studies (20), it co-immunoprecipitated with Cnot1, Cnot6l and Cnot7 from cardiac 

extract (Fig. 2A). In the hearts of Cnot3 mKO mice at around 3 weeks old, the protein 

abundance of Cnot1, a major scaffold for CCR4-NOT complex organization, was 

markedly decreased, whereas those of the deadenylase subunits Cnot6l and Cnot7 

were apparently not changed (Fig. 1A), suggesting that Cnot3 is required to maintain 

Cnot1 protein stability and as a consequence the integrity of the CCR4-NOT complex 

in cardiomyocytes. 

 

To determine a potential role of Cnot1 in the heart, we next generated muscle-specific 

Cnot1 knockout mice by crossing Cnot1 floxed mice with Ckmm-Cre Tg mice (these 

mice are hereafter referred to as ‘Cnot1 mKO’ mice) (Fig. 2B). Loss of Cnot1 in the 

heart muscle resulted in early lethality, with the mice dying around days 10-15 after 
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birth (Fig. 2C), which may be due to Cnot1 protein abundance being reduced more 

quickly in Cnot1 mKO mice than in Cnot3 mKO mice. Heart sizes and weights of the 

Cnot1 mKO mice were significantly increased (Fig. 2D), whereas the skeletal muscle 

weights and the body weights of Cnot1 mKO mice were unchanged (Fig. 2E). 

Echocardiography showed a marked decline of contractility in Cnot1 mKO mice at 10 

days after birth (Fig. 2F) and ECG analysis demonstrated prolonged QT intervals in 

Cnot1 mKO mice (Fig. 2G). Histological analysis of the hearts of Cnot1 mKO mice 

revealed dying cardiomyocytes with reduced cytoplasmic contents and vacuole 

formation (Fig. 2H). These data show that genetic inactivation of the critical CCR4-

NOT complex components Cnot1 and Cnot3 result in severe heart failure. 

 

Autophagy protein expression is altered in Cnot3-depleted hearts, 

associated with cardiomyocyte death. 

Cnot3 depletion in MEFs affects the expression of thousands of genes across the 

transcriptome (21). As a first step, we characterized cell death in Cnot3-depleted 

hearts. While the number of TUNEL-positive apoptotic cells was increased in the 

hearts of Cnot3 mKO mice compared with wild-type mice (Fig. S3A), Annexin V-

positive apoptotic cells were not detectable among in vitro Cnot3 siRNA-transfected 

cardiomyocytes (Fig. S3B). However, the population of propidium iodide (PI)-positive 

dead cells was increased in cardiomyocytes with Cnot3 knockdown (Fig. S3B), 

suggesting that Cnot3 depletion triggered the death of cardiomyocytes by 

necrosis/necroptosis. Transmission electron microscope (TEM) analysis of Cnot3-

depleted hearts showed focal areas of cardiomyocytes with disrupted actomyosin 
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filaments, mislocalized mitochondria, lysis of cytoplasmic contents and autophagic 

vacuoles (Fig. 3A), suggesting that Cnot3-deleted cardiomyocytes exhibit severe cell 

damage and potentially altered autophagy. The protein abundance of Ulk1, Pik3c3, 

Atg7 and p62 (also known as Sqstm1) was increased in Cnot3-deleted hearts, 

whereas LC3 (also known as Map1lc3b) protein abundance was decreased (Fig. 3B; 

Fig. S4A). To address whether basal autophagy activity was altered by Cnot3 

depletion, we treated Cnot3 mKO mice with bafilomycin A1, a protease inhibitor for 

autolysosomal protein degradation. Although the protein abundance of LC3-II, the 

activated form of LC3, was decreased in vehicle-treated Cnot3 mKO hearts compared 

with WT hearts, bafilomycin A1 treatment normalized the LC3-II abundance in Cnot3 

mKO hearts to values comparable to wild-type hearts (Fig. 3C; Fig. S4B). Consistently, 

the decrease in LC3 abundance in primary cardiomyocytes induced by Cnot3 

depletion was restored by E64d and pepstatin A, a combination of protease inhibitors 

that prevents autolysosome activation (Fig. 3D; Fig. S4C). E64d and peptstatin A also 

restored LC3 abundance in mouse embryonic fibroblasts (MEFs) in which Cnot3 was 

inducibly deleted by tamoxifen treatment (genotype: Cnot3flox/flox; CAG-Cre/Esr1Tg/+) 

(Fig. 3E; Fig. S4D, S4E). However, the increase in p62 abundance in Cnot3 mKO 

hearts was not affected by bafilomycin A1 treatment (Fig. 3C; Fig. S4B). Thus, loss of 

Cnot3 altered the protein abundance of several autophagy factors but had minor 

effects on autophagy flux. 

 

Poly(A) tail length and the stability of mRNAs encoding autophagy 

factors are regulated by Cnot3. 
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Because the CCR4-NOT complex mediates mRNA deadenylation, we examined 

whether mRNAs encoding autophagy factors interacted with CCR4-NOT complex 

using RNA-immunoprecipitation and high-throughput sequencing (RIP-seq). RNA 

immunoprecipitation experiments with mouse heart lysates were performed with an 

antibody specific for Cnot3 and negative control IgG, and RNA from total extracts 

(Input) and Cnot3-immunoprecipitated samples were sequenced (Fig. 4A; Fig. S5A-C). 

Differentially expressed gene (DEG) analysis revealed that 983 (of 24421) protein-

coding mRNAs were enriched only in Cnot3 RNA immunoprecipitations (Table S1). 

Gene ontology (GO) analysis showed that the mRNAs present only in Cnot3 RIP-seq 

DEGs were associated with the terms “transcription factor,” “histone modification,” 

“protein modification,” and “P-body” (Fig. 4B; Tables S2 - S4). For mRNAs encoding 

autophagy-encoding factors, only Atg7 mRNA was detected in Cnot3 RNA 

immunoprecipitates (Fig. 4C). qPCR analysis showed that Atg7, Pik3c3 and Sqstm1 

(encoding p62) mRNAs co-immunoprecipitated with Cnot3 (Fig. S5D). qPCR analysis 

for mRNA expression showed that the mRNA abundance of Atg7, Atg5 and Sqstm1 

was not changed in Cnot3 mKO hearts (Fig. 4D). In contrast, whereas Becn1, Atg12 

and Map1lc3b (encoding LC3) mRNA abundance was decreased by Cnot3 depletion, 

Ulk1 and Pik3c3 mRNA abundance slightly increased (Fig. 4D). These results 

suggested that the protein abundance of Ulk1, Pik3c3, Atg7 and p62 was post-

transcriptionally increased in Cnot3 mKO hearts. 

 

We next measured the poly(A) tail length of autophagy factor-encoding mRNAs. The 

length of poly(A) tails for Ulk1, Pik3c3, Atg5, Atg7 and Sqstm1 mRNAs were 
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considerably longer in Cnot3-deleted hearts (Fig. 4E), and these longer poly(A) tails 

were more evident at postnatal day 18 than at postnatal day 8 (Fig. S5E), suggesting 

that the deadenylase activity of the CCR4-NOT complex was impaired after Cnot3 

deletion. To ask whether the longer poly(A) tail is also observed upon depletion of 

CCR4-NOT deadenylase subunits, we further investigated poly(A) tail length and 

mRNA stability in primary mouse cardiomyocytes. siRNA knockdown of Cnot3 or all 

the deadenylase subunits (Cnot6, Cnot6l, Cnot7 and Cnot8) efficiently decreased the 

mRNA and protein abundance in cardiomyocytes (Fig. S6A, S6B). The mRNA 

abundance of Pik3c3, Atg5 and Sqstm1 was increased in Cnot3 siRNA-treated 

cardiomyocytes compared to those in control siRNA-treated cells, and Cnot6/6l/7/8-

depleted cardiomyocytes showed similar or greater increase in Pik3c3, Atg5 and 

Sqstm1 mRNA abundance (Fig. S6C). Similarly, the protein abundance of Atg5, Atg7 

and p62 was increased in cardiomyocytes treated with either Cnot3 or Cnot6/6l/7/8 

siRNAs (Fig. S6D). The poly(A) tails of Ulk1, Pik3c3, Atg5, Atg7 and Sqstm1 mRNAs 

were longer in cardiomyocytes treated with Cnot3 or Cnot6/6l/7/8 siRNAs than those 

in cardiomyocytes that received control siRNA (Fig. 4E; Fig. S6E). Furthermore, Ulk1, 

Pik3c3, Atg5, Atg7 and Sqstm1 mRNAs were more stable in cardiomyocytes treated 

with Cnot3 or Cnot6/6l/7/8 siRNAs than in control siRNA-treated cardiomyocytes (Fig. 

4F; Fig. S6F). These results indicate that in Cnot3-depleted hearts, mRNAs encoding 

select autophagy factors have longer poly(A) tails and are stabilized due to decreased 

deadenylase activity of CCR4-NOT complex, resulting in increased protein abundance. 
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Loss of Atg7 improves cardiac dysfunction in CCR4-NOT complex-

depleted mice. 

Ulk1 and Pik3c3 are involved in autophagy initiation, and Atg7 executes autophagy by 

catalyzing the covalent attachment of Atg12 to Atg5 and that of 

phosphatidylethanolamine to LC3 with its ubiquitin E1-like enzyme activity (9). To ask 

whether the increased abundance of autophagy factors was functionally involved in 

heart failure of Cnot3 mKO mice, we investigated whether simultaneous knockout of 

Atg7 and Cnot3 genes might rescue the cardiac dysfunction of Cnot3 mKO mice. We 

crossed Atg7 floxed mice and Cnot3 floxed mice onto the Ckmm-Cre Tg background 

to delete both Atg7 and Cnot3 in cardiac muscle (Cnot3;Atg7 dmKO mice) (Fig. 5A). 

Loss of Atg7 impaired autophagosome formation as shown by a complete loss of LC3-

II and an increase in p62 abundance (Fig. 5A). Although all of Cnot3 mKO mice died 

within 4 weeks after birth, Cnot3;Atg7 dmKO mice survived to ~7 weeks after birth (Fig. 

5B).  Deletion of Atg7 also significantly attenuated the increased heart weight of Cnot3 

mKO mice to values comparable to control wild type mice (Fig. 5C). The impaired 

heart contractility and the longer QT interval in Cnot3 mKO mice were also restored to 

WT values in Cnot3;Atg7 dmKO mice (Fig. 5D, 5E). Histological analysis showed 

reduced cell death in Cnot3;Atg7 dmKO mice compared with Cnot3 mKO mice (Fig. 

5F) and the reduced myofibril content in Cnot3 mKO mice was partially reversed in 

Cnot3;Atg7 dmKO mice (Fig. 5G). We next generated adult mice with a double 

knockout of Cnot3 and Atg7 (Cnot3;Atg7 dcKO mice) by crossing Atg7 floxed mice 

and Cnot3 floxed mice onto the MHC-MerCreMer Tg background and treating the 

resulting mice with tamoxifen. Adult Cnot3;Atg7 dcKO mice survived for longer and 
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showed increased heart contractility and reduced cardiomyocyte death compared to 

the single Cnot3 cKO mice (Fig. S7A-F) at 14 days after tamoxifen treatment. To 

clarify the effects of Cre overexpression, we generated the Cnot3;Atg7 dcKO mice 

homozygous for MHC-MerCreMer Tg, namely double-Cre Cnot3;Atg7 dcKO mice 

(genotype: Cnot3f/f;Atg7;f/f;MHC-MerCreMerTg/Tg) and compared them with the mice 

heterozygous for MHC-MerCreMer Tg; single-Cre Cnot3;Atg7 dcKO mice (genotype: 

Cnot3f/f;Atg7;f/f;MHC-MerCreMerTg/+) (Fig. S7D). The phenotypic rescue of cardiac 

dysfunction in adult Cnot3 cKO mice by double knockout of Cnot3 and Atg7 

(Cnot3;Atg7 dcKO mice) was comparable between double-Cre and single-Cre 

expressing mice (Fig. S7E), indicating that over-expression of Cre recombinase did 

not affect the observed phenotype. In addition, overexpression of ATG7 increased the 

population of PI-positive dead cells in Cnot3 siRNA-transfected cardiomyocytes but 

not in control siRNA-transfected cells (Fig. S8A, S8B). Furthermore, we deleted both 

Cnot1 and Atg7 on the Ckmm-Cre Tg background in cardiac muscle (Cnot1;Atg7 

dmKO mice (genotype: Cnot3f/f;Atg7;f/f;Ckmm-CreTg/+)) (Fig. 6A). Cnot1;Atg7 dmKO 

mice survived longer than Cnot1 mKO mice (Fig. 6B). Deletion of Atg7 significantly 

attenuated the impaired heart contractility and longer QT interval in Cnot1 mKO mice 

to wild type values (Fig. 6C, 6D). Histological analysis showed reduced cell death in 

Cnot1;Atg7 dmKO mice compared with Cnot1 mKO mice (Fig. 6E). 

 

To explore if canonical autophagy was responsible for the rescue of heart failure in 

Cnot3 mutant mice, we also generated Atg5 flox, Cnot3 flox and Ckmm-Cre Tg mice 

(Cnot3;Atg5 dmKO mice) (Fig. 5A; Fig. S9A). Similar to Atg7, loss of Atg5 also 
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critically impaired autophagosome formation in the heart (Fig. 5A), which is consistent 

with previous studies showing essential roles of Atg5 as well as Atg7 in canonical 

autophagy (22). However, double knockout of Atg5 and Cnot3 (Cnot3;Atg5 dmKO) did 

not rescue the reduced survival, increased heart weight, impaired contractility, and 

conduction defects observed in the single Cnot3 mKO mice (Fig. S9B-E), indicating 

that autophagy per se was not responsible for the rescue of the Cnot3 KO heart 

phenotype. These data indicate that Atg7 promotes cardiac dysfunction of Cnot3 mKO 

mice independently of the canonical autophagy pathway. 

 

Nuclear Atg7 regulates p53 activity to induce the expression of cell 

death genes in Cnot3-depleted cardiomyocytes. 

Consistent with previous studies on CCR4-NOT depletion in cancer cells and B cells 

(20, 23), p53 protein abundance was increased in the hearts of Cnot3 mKO mice (Fig. 

7A). In response to starvation, Atg7 localizes to nucleus and promotes p53-mediated 

transcription of p21, which encodes a cell cycle inhibitor, in fibroblasts or HCT116 

colon carcinoma cells (19). We thus examined the localization of Atg7 proteins in 

Cnot3 KO mouse embryonic fibroblasts (MEFs). Immunocytochemistry showed that 

Atg7 and p53 were detected in the nucleus of Cnot3 KO MEFs (Fig. 7B; Fig. S10A), 

and subcellular fractionation also showed that the nuclear amounts of both Atg7 and 

p53 were increased in Cnot3 KO MEFs compared with control cells (Fig. 7C). In Cnot3 

siRNA-transfected cardiomyocytes the nuclear localization of Atg7 and p53 was also 

increased compared with control siRNA-transfected cardiomyocytes (Fig. 7D; Fig. 

S10B). Atg7 and p53 coimmunoprecipitated from Cnot3 mKO heart lysates, indicating 
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that Atg7 and p53 interacted in Cnot3-depleted hearts (Fig. 7E; Fig. S10C). Moreover, 

simultaneous transfection of p53 siRNA or Atg7 siRNA with Cnot3 siRNA decreased 

the numbers of PI-positive dead cardiomyocytes (Fig. 7F; Fig. S10D-F), suggesting 

that p53 is involved in cell death in Cnot3-depleted hearts. 

 

We next examined p53 target gene expression in Cnot3-deleted hearts. Although 

ATG7 induces p21 expression in nutrient-deprived cells (19), p21 expression was not 

significantly increased in Cnot3-depleted cardiomyocytes, which was also not affected 

by additional deletion of Atg7 (Fig. 7G). In contrast, genes encoding cell death factors 

such as Puma, Bax and Ripk3 showed increased expression in the hearts of Cnot3 

mKO mice (Fig. 7G). The increased mRNA expression of Puma and Ripk3 but not Bax 

was decreased to varying extents by double knockout of Cnot3 and Atg7 (Fig. 7G). 

Moreover, Puma protein abundance was consistently increased in Cnot3-deleted 

hearts but decreased by additional knockout of Atg7 (Fig. S11A). Puma protein 

abundance is largely regulated at the transcriptional level through both p53-dependent 

and p53-independent mechanisms (24). Chromatin immunoprecipitation (ChIP) 

showed that in Cnot3 KO MEFs, Atg7 was bound to the genomic region close to the 

transcriptional start site of the Puma and Ripk3 genes (Fig. S11B), overlapping the 

region where p53 binds and induces gene expression (24) (Fig. S11B). Moreover, 

siRNA-mediated knockdown of p53 decreased the binding of Atg7 protein to the Puma 

and Ripk3 gene loci in Cnot3 KO MEFs (Fig. 7H; Fig. S11C). Cnot3 RIP-seq analysis 

using mouse heart lysates (Fig. 4A, B; Table S1) showed that Cnot3 protein bound to 

Puma mRNA, but not Bax, Ripk1 and Ripk3 mRNAs (Fig. S11D). Puma mRNA 
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expression was not stabilized but markedly increased by Cnot3 depletion in 

cardiomyocytes (Fig. S11E, S11F), suggesting that the increase in Puma expression 

in Cnot3-deleted hearts was primarily mediated through increased transcription. These 

results indicate that under CCR4-NOT-depleted conditions, Atg7 regulates p53 activity 

to induce expression of cell death-associated genes. 
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Discussion 

In this study, we demonstrated that mRNA deadenylation of the autophagy regulator 

Atg7 through the CCR4-NOT complex was crucial to maintain cardiomyocyte survival, 

cardiac contractility and proper QT intervals. Cnot3 interacted with nearly one 

thousand mRNAs including Atg7 and regulated poly(A) tail shortening and mRNA 

decay of Atg7 mRNA. Loss of Cnot3 led to increased expression and non-canonical 

activation of Atg7 to promote p53-induced expression of Puma and Ripk3, thereby 

accelerating cardiomyocyte death. 

 

Although loss of Cnot3 had minor effects on canonical autophagy process, our genetic 

data revealed a molecular connection between Cnot3 and Atg7, in which simultaneous 

deletion of Atg7 and Cnot3 markedly slowed the damage to Cnot3-deleted hearts. In 

autophagy flux measurements, we observed discrepant changes in autophagy 

markers. Decreased LC3-II abundance in Cnot3 mKO hearts was restored to control 

values with bafilomycin A1, which was indicative of increased autophagy flux, but 

counter to this observation was the lack of further increase in p62 abundance. These 

finding may point to previously unknown pathways and biology. Indeed, in Cnot3-

mutated cells, Atg7 bound to p53 in the nucleus where it localized to transcriptional 

start sites of Puma and Ripk3, close to the p53-binding motif. The interaction of Atg7 

and p53 in CCR4-NOT-depleted cardiomyocytes was likely involved in inducing cell 

death, whereas the same interaction occurring in nutrient-deprived proliferating cells 

halts cell cycle progression and thereby prevent cell damage (19). In addition, 

inducible overexpression of Atg7 in the adult hearts does not induce overt cell death 
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phenotypes (25). We thus anticipated that overexpression of Atg7 alone was not 

sufficient to induce cardiomyocyte death, and indeed Atg7-mediated cell damage 

required Cnot3 depletion. We assume that impaired mRNA deadenylation and/or 

dysregulation of other autophagy genes were necessary for Atg7-mediated cell 

damage. The mechanism by which CCR4-NOT depletion facilitates binding of Atg7 

and p53 proteins to the genomic regions of Puma and Ripk3 is currently unknown. 

Since our electron microscopy analysis also showed abnormal structures of nuclear 

membranes and RIP-seq analysis showed that GO terms for transcription factors were 

enriched in Cnot3-bound RNAs, CCR4-NOT depletion might alter chromatin 

architecture and accessibility to transcription factors. Nevertheless, our findings 

strengthen the biological relevance of Atg7 and p53 interactions and may warrant 

further studies on Atg7 functions.  

 

Puma and Ripk3 promote necrosis and/or apoptosis of cardiomyocytes in mouse heart 

failure models (26-28). Deletion of Puma attenuates cardiomyocyte apoptosis induced 

by pressure overload stress (27). However, we did not find evidence that Cnot3 

depletion increased cardiomyocyte apoptosis in vitro or in vivo. However, reduced 

cytoplasmic contents and vacuole formation in cardiomyocytes in vivo and increased 

population of PI-positive cells in vitro suggested the involvement of necrosis and 

autophagic cell death in Cnot3-deleted cardiomyocytes. Thus, necrosis/necroptosis 

may be the primary cause of death in Cnot3-depleted cardiomyocytes. The necroptotic 

kinases Ripk1 and Ripk3 are involved in ischemia reperfusion injury of the heart (26, 

29), and in this study we showed that Ripk3 expression was increased by Atg7 in 
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Cnot3-depleted hearts, which is mechanistically distinct from the Cnot3-mediated 

decrease in Ripk1 expression through mRNA deadenylation in MEFs (21). These 

results suggest the existence of heart-specific mechanisms of cell survival. We have 

previously reported that in the heart failure model induced by pressure overload, 

Cnot3 heterozygous mice show enhanced cardiac fibrosis, which represents 

cardiomyocyte damage as well as tissue remodeling (5). Thus, we speculate that 

Cnot3 is crucial for survival of cardiomyocytes under pathological conditions. However, 

long QT interval and arrhythmic changes in Cnot3 mKO mice may or may not be 

secondary to the advanced myocardial dysfunction and cell death. Though detailed 

molecular mechanisms need to be further explored, our genetic models of Cnot1 or 

Cnot3 deficiency in hearts demonstrate the importance of the CCR4-NOT complex in 

cardiac homeostasis.  

 

The CCR4-NOT complex regulates gene expression through both transcriptional and 

post-transcriptional mechanisms (1). Our data indicate that the expression of Ulk1, 

Pik3c3, Atg7 and Sqstm1 was post-transcriptionally suppressed by the CCR4-NOT 

complex through decreased mRNA stability and possibly translation suppression. Why 

Atg7, out of almost one thousand RNAs bound to Cnot3 and/or CCR4-NOT target 

genes, is important for cell death in Cnot3-depleted hearts is currently unknown, but 

the enrichment of transcription factors in Cnot3-bound mRNAs may be related to the 

connection between the phenotypes caused by loss of Cnot3 and Atg7-regulated p53 

transcriptional activity. In the mammalian CCR4-NOT complex, CNOT1 and CNOT3 

form a stable core bound to other subunits but do not directly bind to mRNAs. The 
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recognition of autophagy factor-encoding mRNAs by CCR4-NOT complex is hence 

likely mediated through RBPs which interact with the core CCR4-NOT complex. 

Future work will be required to identify the RBPs that bind to mRNAs that encode 

autophagy factors and to the CCR4-NOT complex.  

 

In summary, our findings linking mRNA deadenylation to Atg7 gene regulation uncover 

a cell survival pathway required for cardiac homeostasis. Modulating poly(A) mRNA 

tail length and/or targeting the pro-death effect of nuclear Atg7 might be candidate 

strategies for treating heart diseases. Furthermore, because compounds to activate 

canonical autophagy are being developed to treat various diseases, our results might 

be serve as a cautionary warning for the potential side effects of such compounds and 

could contribute to the development of better autophagy-targeting therapeutics. 
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Materials and Methods 

Cardiac gene knockout of Cnot3 or Cnot1 in mice 

A targeting vector was constructed to flank exons 2 and 3 of the murine Cnot3 gene 

by loxP. The linearized construct was electroporated into A9 embryonic stem (ES) 

cells derived from 129/Ola and C57BL/6J hybrids. The correctly-targeted ES cell 

clones were processed to blastocyst injection to generate chimeric mice, which were 

then crossed with FLPe transgenic mice to delete Neo-cassette and obtain Cnot3 flox 

allele. Cnot3 flox mice were further crossed with muscle creatine kinase promoter-Cre 

Tg mice (Ckmm-Cre Tg mice (31)) to generate muscle-specific Cnot3 knockout (Cnot3 

mKO) mice. Heart-specific tamoxifen-inducible Cnot3 knockout mice (Cnot3 cKO) 

were generated by crossing Cnot3 flox mice with MHC-MerCreMer Tg mice, and 

deletion of Cnot3 in adult mice were induced by 5 consecutive days of intraperitoneal 

injection of 4-hydroxy-tamoxifen (20 mg/kg/day, Sigma H6278), as described 

previously(32). For conditional deletion of Cnot3 in MEFs, we generated CAG 

promoter driven tamoxifen-inducible Cnot3 knockout mice (Cnot3f/f; CAG-

cre/Esr1*5AmcTg/+ mice) (33). Double mutant mice carrying mutations in both Cnot3 

and Atg7 (Cnot3;Atg7 dmKO or Cnot3f/f; Atg7f/f; Ckmm-Cre Tg mice) (Cnot3;Atg7 

dcKO or Cnot3f/f; Atg7f/f; MHC-MerCreMer Tg mice) or in both Cnot3 and Atg5 

(Cnot3;Atg5 dmKO or Cnot3f/f; Atg5f/f; Ckmm-Cre Tg mice) were generated and 

intercrossed more than 10 times (22, 34). Cnot1 flox mice were generated by 

homologous recombination in ES cells, in which loxPs flank exons 21-22 of the Cnot1 

gene (RIKEN, Accession No. CDB0916K), and muscle-specific Cnot1 knockout 

(Cnot1 mKO) mice were generated similarly by crossing Cnot1 flox mice with Ckmm-
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Cre Tg mice. A residual reactivity to the antibody or qPCR amplification of genes in 

the mKO hearts is likely derived from the non-muscle cells in the heart (Fig. 2B; Fig. 

6A). Mice were genotyped by PCR and Southern blotting and maintained at the animal 

facilities of Akita University Graduate School of Medicine. All animal experiments 

conformed to the Guide for the Care and Use of Laboratory Animals published by the 

US National Institutes of Health (NIH Publication No. 85-23, revised 1996). Approvals 

for the experiments were granted by the ethics review board of Akita University. 

 

Echocardiography and ECG measurements 

Echocardiographic measurements were performed as described (35). Briefly, mice 

were anesthetized with isoflurane (1%)/oxygen, and echocardiography was performed 

using Vevo770 equipped with a 30-MHz linear transducer. Fractional shortening (FS) 

was calculated as follows: [(LVEDD – LVESD)/LVEDD] x 100. We used 2D-guided M-

mode measurements to determine % FS. The heart was first imaged in 2D mode in 

the parasternal short-axis view. From this view, an M-mode cursor was positioned 

perpendicular to the interventricular septum and posterior wall of the left ventricle at 

the level of the papillary muscles. M-mode images were obtained for measurement of 

wall thickness and chamber dimensions with the use of the leading-edge convention 

adapted by the American Society of Echocardiography. For measurements of ECG 

(electrocardiography), the anesthetized mice were placed on a heating pad with 

continuous monitoring of body temperature for three-lead ECG measurements in lead 

II for over 10 min using pad electrodes and a PowerLab 26T system (AD Instruments). 

Recordings (16 bit, 2 kHz/channel) were analyzed using the LabChart v7.0 program 
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(AD Instruments) and filtered between 0.5 and 500 Hz. Corrected QT (QTc) intervals 

were obtained using the formula QT/(RR/100)1/2, as described (36).  

 

Histology 

For histology, hearts were arrested with 1 M KCl, fixed with 10% formalin, and 

embedded in paraffin. 5 μm-thick sections were then cut and stained with hematoxylin 

and eosin (H&E). To detect apoptotic cells, TUNEL assay was performed using 

ApopTag Peroxidase In Situ Apoptosis Detection Kit (Chemicon). To detect fibrotic 

areas, sections were stained with Masson-Trichrome. To visualize filamentous actin 

(F-actin) as myofibrils, frozen hearts were cryo-sectioned with thickness of 8-10 μm 

and probed with Alexa546-labeled phalloidin and DAPI (Molecular Probes). For 

electron microscopy analyses, heart tissues were fixed by a conventional method. 

Fixed samples were embedded in Epon 812, and thin sections were then cut and 

stained with uranyl acetate and lead citrate for observation under a Jeol-1010 electron 

microscope (Jeol) at 80 kV (37). 

 

RNA analyses 

Tissue RNA was extracted using TRIzol reagent (Invitrogen), and RNA from cells was 

extracted with RNeasy Mini Kit (Qiagen). For real-time qRT-PCR, cDNA was 

synthesized using the PrimeScript RT reagent kit (TAKARA), and real-time PCR was 

run in 96 well plates using a SYBR Premix ExTaq II (TAKARA) according to the 

instructions of the manufacturer. Relative gene expression was quantified using the 

Thermal Cycler Dice Real Time System II software (TAKARA). All primers used in 
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qRT-PCR are listed in Table S5. To assess mRNA stability, cells were treated with 

actinomycin D (2.5 g/ml, Wako). Total RNA was extracted at indicated time points 

after actinomycin D treatment, and subjected to qRT-PCR. Measurement of poly (A) 

length was performed as described previously(38). Briefly, heart RNAs (150 ng) were 

subjected to reverse transcription with oligo(dT) anchor primer (5’-

GCGAGCTCCGCGGCCGCGTTTTTTTTTTTT-3’) using Cloned AMV First-Strand 

cDNA Synthesis Kit (Invitrogen). The 3’ ends of synthesized cDNAs were amplified 

with oligo(dT) anchor and gene specific primers. 

 

RIP-seq 

RNA/CNOT3 complexes were immunoprecipitated from mouse heart lysates using 

anti-CNOT3 antibody (21) or control IgG (MBL) antibodies as described (39). RNAs in 

immunoprecipitates were purified with RIP-Assay Kit (MBL). Total RNA extracted from 

heart lysates (Input) or immunoprecipitated with control IgG or anti-CNOT3 IgG was 

used for RNA-seq library preparation with TruSeq Strand mRNA Sample Prep kit 

(Illumina). 36 base-pair single-end read RNA-seq was performed with Hiseq3000 

(Illumina). For data analysis we employed a conventional method commonly applied to 

RNA-seq data to process RIP-seq data (40). Raw FASTQ files were assessed to 

remove low quality reads by Trimmomatic version 0.3.6 (41). High quality reads were 

subsequently aligned to UCSC mm10 as the reference genome by Bowtie2 version 

2.2.5 with Tophat version 2.1.0. Raw read count data were extracted, normalized and 

analyzed to obtain DEGs by R Bioconductor version 3.5 packages Rsubread and 

edgeR. The tools used have been described previously (42). The read count data 
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showed sufficient sequencing depth in terms of the total number assigned reads and 

good correlations among technical replicates (Fig. S5B and S5C). Genes were 

detected as differentially expressed if a false discovery rate (FDR) calculated by the 

Benjamini-Hochberg method was less than 0.05, gene expression for the mean value 

of Input samples (two replicates) measured by counts-per-million value is greater than 

0.1 and the fold-change over Input is greater than 20.5=1.414. GO-enrichment analysis 

was implemented by R Bioconductor package clusterProfiler (43). GO terms were 

selected by p-value with cutoff threshold 0.01. The RIP-seq data generated from 

Cnot3 RIP (n=2 independent experiments), control IgG RIP (n=2 independent 

experiments), and RNA from total extracts (n=2 independent experiments) have been 

deposited at NCBI's Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE103629. 

 

Cell cultures 

Primary cardiomyocytes were isolated from prenatal mouse hearts of wild type mice 

as described previously (44). Briefly, hearts were excised and rapidly minced into 3 or 

4 pieces and digested with collagenase (Wako) for 45 min at 35oC. Cardiomyocytes 

were collected, pre-plated to exclude non-cardiomyocytes, and plated on gelatinized 

culture dishes or plates with siRNAs for control, Cnot3, Atg7, p53 or combinations of 

Cnot6, Cnot6l, Cnot7 and Cnot8 siRNAs. siRNA target sequences are listed in Table 

S6. Twenty four hours after plating, control plasmid or pCMV-hATG7 (45) was 

transfected. At 72 hours after plating, cardiomyocytes were subjected to various 

assays. For inducible deletion of Cnot3 in MEFs, MEFs were isolated from 13.5 dpc 
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embryos from the crossing of Cnot3f/f;CAG-Cre/Esr1*5AmcTg/+ mice and Cnot3f/f mice, 

and the genotypes were determined by PCR. When plating, the Cnot3f/f;CAG-

Cre/Esr1*5AmcTg/+ MEFs (passage 4-7) were treated with 2 M 4-hydroxy-tamoxifen 

(4-OHT) to obtain Cnot3 KO MEFs, and vehicle-treated Cnot3f/f;CAG-

Cre/Esr1*5AmcTg/+ MEFs or Cnot3f/f MEFs served as wild type MEFs. At 48 or 72 

hours after plating, MEFs were harvested for various assays. 

 

Immunoprecipitation and Western blot 

Heart proteins were extracted with a TNE lysis buffer (50 mM Tris, 150 mM NaCl, 1 

mM EDTA, 1% NP40, protease inhibitor (complete Mini, Roche), 100 mM NaF, 2 mM 

Na3VO4), as previously described(44). Heart lysates were precleared with protein G-

Sepharose (GE healthcare) for 1 hour at 4°C and proteins in supernatant were 

immunoprecipitated with anti-CNOT3 (clone 4B8; Abnova), anti-ATG7 (45), anti-p53 

(Cell Signaling 1C12), or control IgG at 4°C overnight. Immune complexes were 

washed five times with TNE lysis buffer followed by mixing with LDS sample buffer 

(Invitrogen). After sonication and denaturation with LDS sample buffer (Invitrogen) at 

70oC, proteins were electrophoresed on NuPAGE bis-tris precast gels (Invitrogen) and 

transferred to nitrocellulose membranes (0.2 m pore, Invitrogen). Membranes were 

probed with following antibodies; CNOT1, CNOT3, CNOT6L, CNOT7 and ATG7 

antibodies described previously (45-47) and commercially obtained CNOT3 (clone 

4B8; Abnova), Ulk1 (Cell Signaling D8H5), Pik3c3 (Cell Signaling 3811), Becn1 (Cell 

Signaling D40C5), ATG5 (Sigma A0731), hnRNPC (Sigma R5028), LC3 (Cell 

Signaling 2775), Puma (Cell Signaling 14570), p62 (MBL PM045), -Tubulin (Sigma 
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T5168) and GAPDH (Cell Signaling 14C10) antibodies. The bands were visualized 

with ECL reagent (GE healthcare) using ChemiDoc Touch Imaging System (Bio-Rad). 

Image Lab software was used to quantify band intensity. 

 

Immunocytochemistry 

Mouse cardiomyocytes on LabTek chambers (Thermo Scientific, 177437) or MEFs on 

cover slips were fixed with 4% paraformaldehyde and incubated with antibodies for 

ATG7 (45), p53 (Cell Signaling 1C12), LC3 (Cell Signaling 2775) or p62 (MBL PM045) 

and then incubated with appropriate secondary antibodies. LabTek chambers were 

mounted with mounting medium containing DAPI. Apoptotic cells were detected using 

Annexin V-FITC Apoptosis Detection Kit (Biovision) according to the manufacturer’s 

instructions. Necrotic/necroptotic cells were detected by PI incorporation. Cells were 

treated with 5 g/ml of PI (Sigma) and 100 g/ml of Hoechst (Thermo Scientific) for 10 

min at room temperature and analyzed using fluorescence microscopy. The cell death 

rate was calculated as ratio of PI to Hoechst incorporation in nuclei. Images were 

analyzed using multiphoton laser microscopy (A1R MP, Nikon) or fluorescence 

microscopy (BZ9000, Keyence).  

 

ChIP assay 

Wild type and Cnot3 KO MEFs at 72 hr after 4-OHT treatment were crosslinked with 

1% paraformaldehyde for 5 minutes, quenched with glycine, cell lysates harvested, 

and chromatin DNAs were shared to 300-600 bp size by using the Picoruptor 

(Diagenode). ChIP assays were performed using the ChIP-IT (Active Motif) and IgG 
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(Active Motif) used as a negative control. Anti-Atg7 or anti-p53 antibodies were used 

to immunoprecipitate the DNA/protein complex. Crosslink reversed samples were 

treated with Proteinase K and the DNA purified and analyzed by qPCR. The qPCR 

primers were designed in the region of Puma genomic locus (+253 ~ +485 from the 

transcriptional start site) and Ripk3 genomic locus (-698 ~ -543 from the transcriptional 

start site). 

 

Measurement of autophagy flux 

Cardiac autophagy flux was determined as previously described (48). Briefly, mice 

were intraperitoneally injected with Bafilomycin A1 (6 mol/kg, LC Laboratories) 30 

min before sacrifice. To determine autophagy flux in primary cardiomyocytes and 

MEFs, cells were treated with 10 g/ml of E64d and 10 g/ml of pepstatin A (Peptide 

Institute) for 24 hour at 37°C. LC3-II and p62 protein abundance and LC3 puncta were 

detected by western blotting and immunocytochemistry, respectively, as markers of 

autophagy flux. 

 

Statistical analyses. Data are presented as mean values ± SEM. Normally distributed 

data were analyzed by an unpaired t-test. Data not normally distributed were analyzed 

using the Mann-Whitney test. P < 0.05 was considered significant. 
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Supplementary Materials 

Fig. S1. Generation of Cnot3 muscle knockout (Cnot3 mKO) mice. 

Fig. S2.  Inducible cardiac-specific deletion of Cnot3 in adult mice (Cnot3 cKO). 

Fig. S3. Cnot3 depletion increased apoptosis and necrosis in mouse cardiomyocytes. 

Fig. S4. Cnot3 depletion altered autophagy protein abundance without changing 

autophagy flux. 

Fig. S5. Cnot3 RIP-seq analysis and poly(A) tail length measurements of autophagy 

factor-encoding mRNAs in hearts. 

Fig. S6. Poly(A) tail length and stability of autophagy factor-encoding mRNAs are 

regulated by CCR4-NOT complex in cardiomyocytes. 

Fig. S7. Atg7 promotes cardiac dysfunction in adult Cnot3 cKO mice. 

Fig. S8. Atg7 promotes cell death in Cnot3-depleted cardiomyocytes. 

Fig. S9. No phenotypic rescue of Cnot3 mKO mice by double knockout of Cnot3 and 

Atg5. 

Fig. S10. Cnot3 depletion enhances the interaction of Atg7 with p53 to induce the 

expression of cell death-associated genes. 

Fig. S11. Expression of cell death-associated genes in Cnot3 mKO mice. 
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Figure legends 

Fig. 1. Severe heart failutre by muscle-specific deletion of Cnot3 in 

mice.  

A, Western blot for CCR4-NOT complex subunits in the hearts of WT and Cnot3 

muscle knockout mice (Cnot3 mKO), representative of 3 mice per genotype in 3 

independent experiments. B, Postnatal survival curve for WT (n=7) and Cnot3 mKO 

(n=7) mice. Tissue samples were harvested at postnatal day 19 (arrow head). C, 

Macroscopic pictures and sections of the hearts of WT and Cnot3 mKO mice 

(representative of 3 mice per genotype). Bars indicate 1 mm. D, Heart weights (HW) of 

WT (n=7) and Cnot3 mKO (n=7) mice. BW, body weight. E-F, Heart function 

measurements of WT (n=12) Cnot3 mKO (n=9) mice. Representative M-mode 

echocardiography (E, left), left ventricular end-diastolic diameter (LVEDD), left 

ventricular end-systolic diameter (LVESD), %Fractional shortening (%FS) (E, right), 

representative electrocardiogram (ECG) chart (F, left) and QTc (corrected QT) interval 

(F, right) for WT and Cnot3 mKO mice at 19 days of age are shown. G, Hematoxylin & 

Eosin histology of hearts of WT and Cnot3 mKO mice, representative of 3 mice per 

genotype. Bars indicate 20 m. H, Myofibrils in WT and Cnot3 mKO mouse hearts, 

representative of 3 mice per genotype. Myofibrils (F-actin staining, red) and nuclei 

(DAPI, blue) are visualized. Bars indicate 20 m. All values are means ± SEM. *P < 

0.05, **P < 0.01, unpaired two-tailed Student’s t-tests. 

 

Fig. 2. CCR4-NOT depletion results in severe heart failure in mice.  
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A, Co-immunoprecipitation of Cnot1, Cnot6l and Cnot7 with Cnot3 from the lysates of 

mouse hearts. N=2 independent experiments. B, Western Blot for Cnot1, Cnot3, 

Cnot6l and Cnot7 in the hearts of Cnot1 muscle knockout (Cnot1 mKO) mice. N=3 

independent experiments. C, Postnatal survival curve for WT (n=6) and Cnot1 mKO 

(n=15) mice. Tissue samples were harvested at postnatal day 9 (arrow head). D, 

Macroscopic pictures of the hearts (left) and heart weights (right) of WT (n=13) and 

Cnot1 mKO (n=12) mice. Bars indicate 1 mm. E, Body weights (left) and skeletal 

muscle weights (right) of WT (n=11) and Cnot1 mKO (n=11) mice. Ga-MW, 

gastrocnemius-muscle weight. F-G, Heart function measurements of WT (n=12) and 

Cnot1 mKO (n=11) mice. Representative M-mode echocardiography (F, 

left), %Fractional shortening (%FS) (F, right), representative ECG chart (G, left) and 

QTc interval (G, right) for WT and Cnot1 mKO mice at postnatal day 9 are shown. H, 

Hematoxylin & Eosin histology of WT (representative of n=3) and Cnot1 mKO 

(representative of n=3) mouse hearts. Bars indicate 20 m. All values are means ± 

SEM. *P < 0.05, **P < 0.01, unpaired two-tailed Student’s t-tests. 

 

Fig. 3. Autophagy protein abundance but not autophagy flux is 

altered in Cnot3-depleted heart. 

A, TEM analysis for WT (representative of n=3) and Cnot3 mKO (representative of 

n=3) mouse hearts. Higher magnification of the colored rectangle (top) is shown in the 

bottom panel. Bars indicate 5 m in top panels and 1 m in bottom panels. B, Western 

Blot for autophagy factors in the hearts of WT and Cnot3 mKO mice under fed and 

fasting conditions. Representative blots (left panel and Fig. S3A) of n=3 independent 
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experiments are quantified for fed condition with WT (n=5) and Cnot3 mKO (n=5) mice 

(right top panel) and for fasting condition with WT (n=3) and Cnot3 mKO (n=3) mice 

(right bottom panel). C, Western Blot for LC3 and p62 in the hearts of WT and Cnot3 

mKO mice treated with or without Bafilomycin A1 (Baf-A1). Representative blots (left 

panel and Fig. S3C) of n=3 independent experiments were quantified for WT mice 

treated with vehicle (n=7), Cnot3 mKO mice treated with vehicle (n=7), WT mice 

treated with Baf-A1 (n=6) and Cnot3 mKO mice treated with Baf-A1 (n=6). D, 

Immunocytochemistry of LC3 in mouse cardiomyocytes transfected with Cnot3 (si-

Cnot3) or control (si-Control) siRNAs and treated with or without E64d and pepstatin A 

(Pep). N=2 independent experiments with two different siRNAs for Cnot3 (Fig. S3D). 

Bars indicate 20 m. E, Western Blot for LC3 and p62 in WT and Cnot3 KO MEFs 

treated with or without E64d plus pepstatin A (Pep). N=2 independent experiments. All 

values are means ± SEM. *P < 0.05, **P < 0.01, unpaired two-tailed Student’s t-tests. 

 

Fig. 4. Poly(A) tail length and stability of autophagy factor-encoding 

mRNAs are regulated by CCR4-NOT complex. 

A, RIP-seq plot of the applied cutoff to identify significantly bound or unbound mRNAs 

by Cnot3 in the heart. B, GO-enrichment analysis for Cnot3 DEGs. C, Autophagy 

factor-encoding mRNAs in Cnot3 IgG (Cnot3) RIP or control IgG RIP, normalized to 

input, for two biological replicates (Rep1 and Rep2). #; Atg7 was selected as a gene 

enriched in Cnot3 RIP by R bioconductor package edgeR with the criteria of FDR < 

0.05, cpm for mean Input > 0.1 and Cnot3 RIP/Input > 20.5. D, qRT-PCR to measure 

the expression of autophagy factor-encoding mRNAs in the hearts of WT (n=6) and 
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Cnot3 mKO (n=6) mice. N=2 independent experiments. E, Poly(A) tail length 

measurements of autophagy factor-encoding mRNAs in hearts (left) and mouse 

cardiomyocytes (right). Total RNA was subjected to PCR-based poly(A)-tail length 

analysis. Representative results for the hearts of WT (n=3) and Cnot3 mKO (n=3) mice 

at 18 days old (left) and cardiomyocytes transfected with si-Cnot3 or siRNA 

combinations for Cnot6, Cnot6l, Cnot7 and Cnot8 (si-Cnot6/6l/7/8) (right). Control PCR 

without poly(A) regions are shown in Fig. S5E and S6E. N=3 independent experiments. 

F, The stability of autophagy factor-encoding mRNAs in cardiomyocytes was analyzed 

after actinomycin D treatment. N=3 independent experiments. The data obtained with 

a second set of siRNAs for Cnot3 and Cnot6/6l/7/8 are shown in Fig. S6A-F. All values 

are means ± SEM. *P < 0.05, **P < 0.01, unpaired two-tailed Student’s t-tests. 

 

Fig. 5. Atg7 promotes cardiac dysfunction in Cnot3 mKO mice. 

A, Western Blot for autophagy proteins in the hearts. The hearts of WT, Cnot3 mKO, 

Cnot3;Atg7 double muscle knockout (Cnot3;Atg7 dmKO) and Cnot3;Atg5 double 

muscle knockout (Cnot3;Atg5 dmKO) mice at 18 days old under normal diet feeding 

were harvested. Gapdh was used as a loading control. N=2 independent experiments. 

B, Postnatal survival curve for WT (n=6), Cnot3 mKO (n=11), Atg7 mKO (n=5), and 

Cnot3;Atg7 dmKO (n=5) mice. C, Macroscopic images of the hearts of WT 

(representative of n=3), Cnot3 mKO (representative of n=3), Atg7 mKO (representative 

of n=3), Cnot3;Atg7 dmKO (representative of n=3) mice (left). Heart weight to body 

weight ratios (HW/BW) WT (n=4), Cnot3 mKO (n=4), Atg7 mKO (n=3), Cnot3;Atg7 

dmKO (n=4) mice at 18 days after birth (right). Bars indicate 2 mm. D, Representative 
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M-mode echocardiography (left) and %Fractional shortening (right) at 18 days of age 

for WT (n=5), Cnot3 mKO (n=5), Atg7 mKO (n=3) and Cnot3;Atg7 dmKO (n=5) mice. 

E, Electrocardiogram (ECG) measurements. Representative ECG chart (left) and QTc 

interval (right) of WT (n=9), Cnot3 mKO (n=9), Atg7 mKO (n=3) and Cnot3;Atg7 dmKO 

(n=5) mice at postnatal day 18 are shown. F, Hematoxylin & Eosin histology of the 

hearts of WT (representative of n=3), Cnot3 mKO (representative of n=3), Atg7 mKO 

(representative of n=2), Cnot3;Atg7 dmKO (representative of n=3) mice. Bars indicate 

20 m. G, Myofibrils of the heart sections of Cnot3 mKO (representative of n=3) and 

Cnot3;Atg7 dmKO (representative of n=3) mice at 18 days of age. Myofibrils (F-actin 

staining, red) and nuclei (DAPI, blue) were visualized. Bars indicate 20 m. All values 

are means ± SEM. *P < 0.05, **P < 0.01, unpaired two-tailed Student’s t-tests. 

 

Fig. 6. Atg7 promotes cardiac dysfunction in Cnot1 mKO mice. 

A, qRT-PCR analysis of Cnot1 and Atg7 expression in the hearts of WT, Cnot1 mKO, 

Atg7 mKO and Cnot1;Atg7 dmKO mice at 8 days old. N=3 independent experiments. 

B, Postnatal survival of WT (n=18), Cnot1 mKO (n=18), Atg7 mKO (n=5), and 

Cnot1;Atg7 dmKO (n=17) mice. C, Representative M-mode echocardiography (left) 

and %Fractional shortening (right) for WT (n=13), Cnot1 mKO (n=6), Atg7 mKO (n=3), 

Cnot1;Atg7 dmKO (n=7) mice at 8 days old. D, Electrocardiogram (ECG) 

measurements. Representative ECG chart (left) and QTc interval (right) of WT (n=11), 

Cnot1 mKO (n=6), Atg7 mKO (n=3), and Cnot1;Atg7 dmKO (n=5) mice at postnatal 

day 8 are shown. E, Hematoxylin & Eosin histology of the hearts of WT (representative 

of n=3), Cnot1 mKO (representative of n=3) and Cnot1;Atg7 dmKO (representative of 
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n=3) mice. Bars indicate 50 m. All values are means ± SEM. *P < 0.05, **P < 0.01, 

unpaired two-tailed Student’s t-tests. 

 

Fig. 7. Atg7 regulates p53 activity to induce expression of cell death-

associated genes under Cnot3 depletion. 

A, Western Blot for p53 in the hearts of WT and Cnot3 mKO mice. Each lane 

represents an individual mouse (3 independent experiments). B, 

Immunocytochemistry of Atg7 and p53 in WT and Cnot3 KO MEFs. N=3 independent 

experiments. Bars indicate 20 m. C, Western Blot for Atg7 and p53 in the nuclear 

fraction of Cnot3 KO MEFs. Representative images (left) and quantification results 

(right) of N=6 independent experiments are shown. *P < 0.05, **P < 0.01, paired two-

tailed Student’s t-tests. D, Immunocytochemistry of Atg7 in mouse cardiomyocytes. 

Cnot3 siRNA (si-Cnot3) or control siRNA (si-Control) was transfected into 

cardiomyocytes, which were immunostained for Atg7. N=2 independent experiments. 

Bars indicate 20 m. E, Co-immunoprecipitation of Atg7 and p53. Heart lysates from 

wild type or Cnot3 mKO mice at 18 days old were immunoprecipitated with Atg7 IgG 

(Atg7) and immunoblotted for Atg7 or p53. N=2 independent experiments. F, Cell 

death assessed by PI uptake in mouse cardiomyocytes transfected with si-Cnot3 or si-

Control in combination with siRNAs for Atg7 or p53.  Bars indicate 50 m. G, qRT-

PCR for mRNA expression of cell death-associated genes in hearts. N=3 independent 

experiments. H, ChIP-qPCR for Atg7-bound promoter regions of Puma (left) and Ripk3 

(right) in Cnot3 KO MEFs transfected with p53 siRNA or control siRNA. N=3 
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independent experiments. All values are means ± SEM. *P < 0.05, **P < 0.01, 

unpaired two-tailed Student’s t-tests otherwise stated. 
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Fig. S1. Generation of Cnot3 muscle knockout (Cnot3 mKO) mice. 
A, Gene targeting strategy. Exons 2 and 3 of the Cnot3 gene were floxed with a PGK-
Neo cassette by homologous recombination in A9 ES cells, which were injected into 
blastocysts to generate chimeric mice. The Neo cassette was removed by crossing 
with FLPe recombinase transgenic mice, and muscle-specific deletion of Cnot3 was 
achieved by crossing with muscle creatine kinase-promoter Cre transgenic mice. The 
WT allele, the targeting vector, floxed allele, deleted allele, and the PGK-Neo and DTA 
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selection cassettes are shown. Blue boxes indicate exons. B, Genotyping PCR of 
Cnot3 muscle knockout mice (Cnot3 mKO). Deleted alleles were detected in the heart 
and skeletal muscle (sk. mus.) but not in the tail of Cnot3 mKO mice.  C, Western blot 
for Cnot3, Cnot6l and Cnot7 in the heart and skeletal muscle of WT and Cnot3 mKO 
mice. N=3 independent experiments. D, Immunohistochemistry for Cnot3 in the hearts 
of WT (representative of N=3) and Cnot3 mKO (representative of N=3) mice. Bars 
indicate 10 m. E, Body weight (left) and skeletal muscle weight (right) of WT (N=7) 
and Cnot3 mKO (N=7) mice. F, Electrocardiograms (ECGs) in WT and Cnot3 mKO 
mice. All values are means ± SEM. 
 

  



 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2. Inducible cardiac-specific deletion of Cnot3 in adult mice 
(Cnot3 cKO). 
A, Survival of WT (N=5) and cardiac inducible Cnot3 knockout (Cnot3 cKO) (N=5) mice. 
Cardiac deletion of Cnot3 was induced by injecting 4-hydoxytamoxifen (4-OHT; 40 

mg/kg/day intraperitoneally) to Cnot3 flox mice with the MHC-MerCreMer transgene 
for 5 consecutive days. Measurements of echocardiography and ECG were done at 21 
days after starting 4-OHT injection (arrow head). B, Macroscopic pictures and heart 
weights of WT (N=4) and Cnot3 cKO (N=3) mice. Bars indicate 2 mm. C-D, 
Hematoxylin Eosin histology of the hearts of WT (representative of N=3) and Cnot3 
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cKO (representative of N=3) mice. Bars indicate 1 mm in (C) and 20 m in (D). E-F, 
Heart function measurements of WT (N=4) and Cnot3 cKO (N=3) mice. 
Echocardiography (E) and ECG (F) are shown. All values are means ± SEM. *P < 0.05, 
**P < 0.01. P values were calculated using unpaired two-tailed Student’s t-tests. 
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Fig. S3. Cnot3 depletion increased apoptosis and necrosis in mouse 
cardiomyocytes. 
A, TUNEL staining of the hearts of WT (representative of N=3) and Cnot3 mKO 
(representative of N=3) mice. The ratio of apoptotic cells (arrows in left) to live cells 
are shown (right). Bars indicate 30 m. B, Immunocytochemistry for annexin V and 
propidium iodide (PI) uptake in mouse cardiomyocytes transfected with siRNAs for 
Cnot3 (si-Cnot3) or non-targeted control (si-Control). N=2 independent experiments. 
Bars indicate 100 m. All values are means ± SEM. *P < 0.05. P values were 
calculated using unpaired two-tailed Student’s t-tests. 
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Fig. S4. Cnot3 depletion altered autophagy protein abundance 
without changing autophagy flux. 
A, Western Blot for autophagy proteins in the hearts of fed WT (N=5) and Cnot3 mKO 
(N=5) mice (left panel) and the hearts of fasted WT (N=3) and Cnot3 mKO (N=3) mice 
(right panel). B, Western Blot for LC3 and p62 in the hearts of WT (N=3) and Cnot3 
mKO mice (N=3) treated with or without Bafilomycin A1 (Baf-A1). C, 
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Immunocytochemistry of LC3 in mouse cardiomyocytes transfected with siRNAs for 
Cnot3 (si-Cnot3) or control (si-Control) and treated with or without E64d and pepstatin 
A (Pep). N=2 independent experiments with two different siRNAs for Cnot3. Bars 
indicate 20 m. D, Western blot for Cnot3 in WT and Cnot3 KO MEFs. N=3 
independent experiments. E, Immunocytochemistry for LC3 and p62 in WT and Cnot3 
KO MEFs with or without E64d and pepstatin A (Pep) treatment. N=2 independent 
experiments. Bars indicate 20 m.  
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Fig. S5. Cnot3 RIP-seq analysis and poly(A) tail length 
measurements of autophagy factor-encoding mRNAs in hearts. 
A, Co-immunoprecipitation of Cnot3 with Cnot6l and Cnot7. Cnot3 was 
immunoprecipitated from heart lysates from WT mice at 5 weeks old. 
Immunoprecipitates were immunoblotted for Cnot3, Cnot6l, or Cnot7. N=2 
independent experiments. B, Bar plots of raw read counts for biological replicates of 
input, Control IgG RIP, and Cnot3 RIP. C, Scatterplot for the number of reads counts 
per gene-per million (cpm) between the each replicate of input, Control IgG RIP and 
Cnot3 RIP. D, qRT-PCR to measure the expression of autophagy factor-encoding 

mRNAs in control IgG RIP (N=3) and Cnot3 RIP (N=3). *P < 0.05, one-tailed paired 
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Student’s t-test. E, Poly(A) tail length measurements of autophagy factor-encoding 
mRNAs in the hearts. WT and Cnot3 mKO mice at 8 days old (P8) and 18 days old 
(P18) were used. PCR with poly(A) regions (left) and control PCR without poly (A) 
regions (right) are shown. All values are means ± SEM. *P < 0.05, unpaired two-tailed 
Student’s t-tests otherwise mentioned. 
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Fig. S6. Poly(A) tail length and stability of autophagy factor-
encoding mRNAs are regulated by CCR4-NOT complex in 
cardiomyocytes. 
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A-D, The expression of the indicated mRNAs or proteins was measured in mouse 
cardiomyocytes transfected with siRNAs for control, Cnot3 (si-Cnot3) or combinations 
of Cnot6, Cnot6l, Cnot7 and Cnot8 siRNAs (si-Cnot6/6l/7/8). N=3 independent 
experiments with two different siRNAs for each gene. The results of qRT-PCR (A) and 
Western blot (B) analyses for the CCR4-NOT complex components are shown, and 
qRT-PCR (C) and Western blot (D) analyses for autophagy factors are shown. E, 
Poly(A) tail length measurements of autophagy factor-encoding mRNAs. PCR 
amplifying poly(A) regions (left) and control PCR for 3’ UTR region without poly (A) 
(right) are shown. N=2 independent experiments. F, The stability of autophagy factor-
encoding genes in cardiomyocytes was analyzed after actinomycin D treatment. N=3 
independent experiments. The results of si-Cnot3(#2) and si-Cnot6/6l/7/8(#2) are 
shown in Fig. 4F. All values are means ± SEM. *P < 0.05, **P < 0.01. P values were 
calculated using unpaired two-tailed Student’s t-tests. 
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Fig. S7. Atg7 promotes cardiac dysfunction in adult Cnot3 cKO mice. 
A, Survival of WT (N=4), cardiac inducible Cnot3 knockout (Cnot3 cKO) (N=4) and 
Cnot3;Atg7 double cardiac knockout (Cnot3;Atg7 dcKO) (N=4) mice. Cardiac deletion 
of Cnot3 and Atg7 was induced by injecting 4-hydoxytamoxifen (4-OHT; 40 mg/kg/day 
intraperitoneally) into these mice for 5 consecutive days. Measurements of 
echocardiography was done at 14 days after starting 4-OHT injection (arrow head). B-
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C, Heart function measurements of WT (N=4), Cnot3 cKO (N=3), and Cnot3;Atg7 
dcKO (N=5) mice. Representative M-mode echocardiography (B), left ventricular end-
diastolic diameter (LVEDD), left ventricular end-systolic diameter 
(LVESD), %Fractional shortening (%FS) (C) are shown. D, qPCR analysis for allele 
frequency of MHC-MerCreMer Tg in Cnot3 cKO and Cnot3;Atg7 dcKO 

hearts.Cnot3f/f;MHC-MerCreMer+/+ or Cnot3f/f;Atg7f/f;MHC-MerCreMer+/+ (N=5), 

Cnot3f/f;MHC-MerCreMerTg/+ (N=3), Cnot3f/f;MHC-MerCreMerTg/Tg (N=3), 

Cnot3f/f;Atg7f/f;MHC-MerCreMerTg/+ (N=2), Cnot3f/f;Atg7f/f;MHC-MerCreMerTg/Tg 

(N=2). E, Heart function measurements (%Fractional shortening (%FS)) of the mice 
genotyped in (D). F, Hematoxylin & Eosin histology of WT, Cnot3 cKO, and 

Cnot3;Atg7 dcKO mouse hearts. Bars indicate 20 m. N=2 independent experiments. 
All values are means ± SEM. *P < 0.05, **P < 0.01. P values were calculated using 
unpaired two-tailed Student’s t-tests. 
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Fig. S8. Atg7 promotes cell death in Cnot3-depleted cardiomyocytes.  
A, Western blot for Atg7 in mouse cardiomyocytes transfected with si-Cnot3 or si-
Control in combination with control plasmid (Mock) or pCMV-hATG7 (ATG7-Flag). 
N=3 independent experiments. B, Cell death assessed by propidium iodide (PI) 
uptake in mouse cardiomyocytes transfected with si-Cnot3 or si-Control in 
combination with Mock or ATG7-Flag plasmids. N=3 independent experiments. Bars 
indicate 50 m. All values are means ± SEM. *P < 0.05, **P < 0.01. P values were 
calculated using unpaired two-tailed Student’s t-tests. 
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Fig. S9. No phenotypic rescue of Cnot3 mKO mice by double 
knockout of Cnot3 and Atg5. 
A, qRT-PCR for Cnot3 and Atg5 expression in the hearts of WT (N=12), Cnot3 mKO 
(N=4) and Cnot3;Atg5 double muscle knockout (Cnot3;Atg5 dmKO) (N=4) mice. B, 
Postnatal survival of WT (N=5), Cnot3 mKO (N=4) and Cnot3;Atg5 dmKO (N=5) mice. 
C, Heart weight (HW/BW) of WT (N=13), Cnot3 mKO (N=9) and Cnot3;Atg5 dmKO 
(N=3) mice at postnatal day 18. D-E, Heart function measurements. Representative 
M-mode echocardiography (D, left), %Fractional shortening (%FS) (D, right), 
representative ECG chart (E, left) and QTc interval (E, right) for WT (N=6), Cnot3 
mKO (N=4) and Cnot3;Atg5 dmKO (N=6) mice at 18 days old are shown. All values 
are means ± SEM. **P < 0.01. P values were calculated using unpaired two-tailed 
Student’s t-tests. 
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Fig. S10. Cnot3 depletion enhances the interaction of Atg7 with p53 
to induce the expression of cell death-associated genes. 
A, Immunocytochemistry for Atg7 and p53 in WT and Cnot3 KO MEFs. N=3 
independent experiments. Bars indicate 20 m. B, Immunocytochemistry for Atg7 and 
p53 in mouse cardiomyocytes transfected with Cnot3 siRNA (si-Cnot3) or control 
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siRNA (si-Control). N=2 independent experiments. Bars indicate 20 m. C, Co-
immunoprecipitation of Atg7 and p53. Atg7 or p53 was immunoprecipitated from heart 
lysates from wild type or Cnot3 mKO mice at 18 days old. Immunoprecipitates were 
immunoblotted for Atg7 or p53. Exposures were performed within 1 min (short Exp.) to 
20 min (long Exp.). Nonspecific bands are indicated as asterisks. N=2 independent 
experiments. D-E, Western blot (D) and qRT-PCR (E) analyses for Cnot3, Atg7 and 
p53 in cardiomyocytes transfected with si-Cnot3 or si-Control in combination with 
siRNAs for Atg7 or p53. N=3 independent experiments. F, Cell death measurements 
with propidium iodide (PI) uptake in cardiomyocytes. N=3 independent experiments. 
All values are means ± SEM. *P < 0.05, **P < 0.01, unpaired two-tailed Student’s t-
tests. 
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Fig. S11. Expression of cell death-associated genes in Cnot3 mKO 
mice. 
A, Western Blot of Puma in the hearts of WT, Cnot3 mKO and Cnot3;Atg7 dmKO mice 
at 18 days old. Each lane represents an individual mouse. B, Chromatin 
immunoprecipitation (ChIP) using anti-Atg7 IgG, anti-p53 IgG or control IgG from 
Cnot3 KO MEF lysates. qPCR analysis of the gene locus close to the transcription 
starting site of Puma or Ripk3 was performed. N=3 independent experiments. #P< 0.1, 
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*P < 0.05, one-tailed paired Student’s t-test. C, Western blot for Atg7, p53 and Cnot3 
in WT or Cnot3 KO MEFs transfected with si-p53. N=2 independent experiments. D, 

mRNAs in Cnot3 IgG (Cnot3) RIP or control IgG RIP, normalized to input, for two 
biological replicates (Rep1 and Rep2). #; Puma was selected as a gene enriched in 
Cnot3 RIP by R bioconductor package edgeR with the criteria of FDR < 0.05, cpm for 
mean Input > 0.1 and Cnot3 RIP/Input > 20.5. E, qRT-PCR for Puma mRNA 
expression in cardiomyocytes transfected with siRNAs for control (N=6), Cnot3 (N=3) 
or combinations of Cnot6, Cnot6l, Cnot7 and Cnot8 siRNAs (N=3). N=2 independent 
experiments with two different siRNAs for Cnot3, Cnot6, Cnot6l, Cnot7 and Cnot8. F, 
mRNA stability of Puma mRNA in cardiomyocytes was analyzed after actinomycin D 
treatment. N=3 independent experiments with two different siRNAs for Cnot3, Cnot6, 
Cnot6l, Cnot7 and Cnot8. All values are means ± SEM. #P < 0.1, *P < 0.05, **P < 0.01, 
unpaired two-tailed Student’s t-tests otherwise mentioned. 
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Table S1. Primer list 
Analysis Gene 5' primer 3' primer 

qRT-
PCR 

Ulk1 5'-CGTCCTCCAAGACGCTGTAT-3' 5'-CCTGTTGCTTTCCTCCAAAG-3' 

Pik3c3 5'-AGAGCGTCCACGCACTGT-3' 5'-TCCCCTTTCATTTTCTCCAGT-3' 

Becn1 
5'-
ACCAGCTGGACACTCTCAGCTCAA-
3' 

5'-GCAGCTGCTCACTGTCATCCTC-
3' 

Atg5 
5'-TTGACGTTGGTAACTGACAAAGT-
3' 

5'-TGTGATGTTCCAAGGAAGAGC-
3' 

Atg7 5'-GCTGCTGAGATCTGGGACAT-3' 
5'-
GAGATGTGGAGATCAGGACCAG-
3' 

Atg12 5'-TGAATCAGTCCTTTGCCCCT-3' 5'-CATGCCTGGGATTTGCAGT-3' 
Map1lc
3b 

5'-GTGGAAGATGTCCGGCTCAT-3' 5'-TGGTCAGGCACCAGGAACTT-3' 

Sqstm1 5'-GCTGCCCTATACCCACATCT-3' 5'-CGCCTTCATCCGAGAAAC-3' 

Trp53 
5'-GGACCATCCTGGCTGTAGGTAG-
3' 

5'-
CGAGGCTGATATCCGACTGTGA-3' 

Cnot1 
5'-
CAGAACCTGGCTGTCCACCTAGC-3' 

5'-TGCCTCAGTGTTCGCCTCA-3' 

Cnot3 
5'-
TATGAAGAGAGTGCGTCTGTAGGG
CAGGG-3' 

5'-
TCTTCAAACTGCTCCACCCCTTCG
G-3' 

Cnot6 
5'-
CACATTGGGCAGAGCTTGAAATAA-
3' 

5'-
GATGCAAAGCTGTCAAGTGAGTG
AG-3' 

Cnot6l 
5'-
ACGGGTGTTGCCTTATGAACTTG-3' 

5'-
AAGTTCAGTAGCTTTCGGGTTCCA
-3' 

Cnot7 5'-TTTGGGCTTGTAACCTGGATGAA-
3' 

5'-GTCTTGCAACAACGCCTGGA-3' 

Cnot8 
5'-
CCCGTCCATTTACGATGTGAAATAC
-3' 

5'-
ACTTGGCATCGTCAATACTGTCCT
C-3' 

Gapdh 5'-CTGCACCACCAACTGCTTAG-3' 5'-GTCTTCTGGGTGGCAGTGAT-3' 

18S 5'-AAACGGCTACCACATCCAAG-3' 5'-CCTCCAATGGATCCTCGTTA-3' 

Tbp 5'-GCTCTGGAATTGTACCGCAG-3' 
5'-
GGATTGTTCTTCACTCTTGGCTC-
3' 

ChIP 

Puma 
5'-
AGCACCCCGATTCCCGAAGCTGCT
T-3' 

5'-
TGTAAACAAACCCGCCAGACCGC
TG-3' 

Ripk3 
5'-
CACCACATGCATGGTCATGCACA-3' 

5'-
ACAGACCAGGTTGACTCAAACTCA
C-3' 

Poly(A) 
length 
assay 

Ulk1 
5'-
TCTTCCTTAGTCACCCTATGACCTC
C-3' 

5'-
GAAACACAAAAGGGGGAGACTCA
C-3' 

Pik3c3 
5'-
CTGCTGTGTACTAAAGACATCAAAG

5'-
TCAGAGGGTAAAATGCTTTACTGT
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-3' TTC-3' 

Becn1 5'-TAGCAAAGAACCCTGCCATAG-3' 5'-CACGTCGCACACAGTATCA-3' 

Atg5 
5'-
GGCTCCTGGATTATGTCATTGTTG-
3' 

5'-
GCATACTCAGATGGGTTGACATTC
-3' 

Atg7 
5'-
AACAAACTAGTGGCTATTAATGCGG
-3' 

5'-
TAAAGACCATCATTACGCTGTGC-
3' 

Atg12 
5'-
AGGTCATGCAGGGAATAGTCACAG-
3' 

5'-
CTGGTAAAAATGTTTCAAATTCAA
GTTTAT-3' 

Map1lc
3b 5'-ATGGACTGAAGCCAGCATAG-3' 

5'-
CAGGTTCGTTGTGCCTTTATTAG-
3' 

Sqstm1 
5'-
CCTGACAACCCGTGTTTCCTTTAT-
3' 

5'-
CAGGTTACTTACAAACCAAGTCAG
AGG-3' 

Gapdh 5'-CTCCCACTCTTCCACCTTCGA-3' 
5'-
CTAGGCCCCTCCTGTTATTATGG-
3' 
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Table S2. siRNA list 
siRNA siRNA target sequence 

si-Cnot3 (#1) 5'-GAAGGAGATTAAGAAGCTA-3' 
si-Cnot3 (#2) 5'-CTAAGACCATCACAGATGA-3' 
si-Cnot6 (#1) 5'-GGCTAATGCTCATATGCAT-3' 
si-Cnot6 (#2) 5'-CTATGATGTTCCTCTCAGA-3' 
si-Cnot6l (#1) 5'-CCAATAAACTCAGAAGTTT-3' 
si-Cnot6l (#2) 5'-GTGTTACAATGTGTTATGT-3' 
si-Cnot7 (#1) 5'-GTTATGACTTTGGCTATTT-3' 
si-Cnot7 (#2) 5'-GGTTATGACTTTGGCTATT-3' 
si-Cnot8 (#1) 5'-CCATAGATCTGCTTGCAAA-3' 
si-Cnot8 (#2) 5'-GCAATGTTGATCTTCTTAA-3' 
si-Atg7 5'-CTGTGAACTTCTCTGACGT-3' 

si-p53 5'-CCACTACAAGTACATGTGT-3' 
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