9,443 research outputs found

    The Dense Plasma Torus Around the Nucleus of an Active Galaxy NGC 1052

    Full text link
    A subparsec-scale dense plasma torus around an active galactic nucleus (AGN) is unveiled. We report on very-long-baseline interferometry (VLBI) observations at 2.3, 8.4, and 15.4 GHz towards the active galaxy NGC 1052. The convex spectra of the double-sided jets and the nucleus imply that synchrotron emission is obscured through free--free absorption (FFA) by the foreground cold dense plasma. A trichromatic image was produced to illustrate the distribution of the FFA opacity. We found a central condensation of the plasma which covers about 0.1 pc and 0.7 pc of the approaching and receding jets, respectively. A simple explanation for the asymmetric distribution is the existence of a thick plasma torus perpendicular to the jets. We also found an ambient FFA absorber, whose density profile can be ascribed to a spherical distribution of the isothermal King model. The coexistence of torus-like and spherical distributions of the plasma suggests a transition from radial accretion to rotational accretion around the nucleus.Comment: 10 pages, to appear in Publ. Astron. Soc. Japan, vol.53, No.2 (2001

    An Efficient Algorithm for Enumerating Chordless Cycles and Chordless Paths

    Full text link
    A chordless cycle (induced cycle) CC of a graph is a cycle without any chord, meaning that there is no edge outside the cycle connecting two vertices of the cycle. A chordless path is defined similarly. In this paper, we consider the problems of enumerating chordless cycles/paths of a given graph G=(V,E),G=(V,E), and propose algorithms taking O(E)O(|E|) time for each chordless cycle/path. In the existing studies, the problems had not been deeply studied in the theoretical computer science area, and no output polynomial time algorithm has been proposed. Our experiments showed that the computation time of our algorithms is constant per chordless cycle/path for non-dense random graphs and real-world graphs. They also show that the number of chordless cycles is much smaller than the number of cycles. We applied the algorithm to prediction of NMR (Nuclear Magnetic Resonance) spectra, and increased the accuracy of the prediction

    Quantum network coding for quantum repeaters

    Full text link
    This paper considers quantum network coding, which is a recent technique that enables quantum information to be sent on complex networks at higher rates than by using straightforward routing strategies. Kobayashi et al. have recently showed the potential of this technique by demonstrating how any classical network coding protocol gives rise to a quantum network coding protocol. They nevertheless primarily focused on an abstract model, in which quantum resource such as quantum registers can be freely introduced at each node. In this work, we present a protocol for quantum network coding under weaker (and more practical) assumptions: our new protocol works even for quantum networks where adjacent nodes initially share one EPR-pair but cannot add any quantum registers or send any quantum information. A typically example of networks satisfying this assumption is {\emph{quantum repeater networks}}, which are promising candidates for the implementation of large scale quantum networks. Our results thus show, for the first time, that quantum network coding techniques can increase the transmission rate in such quantum networks as well.Comment: 9 pages, 11figure

    A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2

    No full text
    International audienceSince the first use of a p-adic method for counting points of elliptic curves, by Satoh in 1999, several variants of his algorithm have been proposed. In the current state, the AGM algorithm, proposed by Mestre is thought to be the fastest in practice, and the algorithm by Satoh­-Skjernaa­-Taguchi has the best asymptotic complexity but requires precomputations. We present an amelioration of the SST algorithm, borrowing ideas from the AGM. We make a precise comparison between this modified SST algorithm and the AGM, thus demonstrating that the former is faster by a significant factor, even for small cryptographic sizes

    Impurity migration and diffusion during deformation-induced recrystallization of ice

    Get PDF
    第3回極域科学シンポジウム/第35回極域気水圏シンポジウム 11月29日(木) 国立国語研究所 2階ロビ
    corecore