2,771 research outputs found

    The Experimental plan of the 4m Resonant Sideband Extraction Prototype for The LCGT

    Get PDF
    The 4m Resonant Sideband Extraction (RSE) interferometer is a planned prototype of the LCGT interferometer. The aim of the experiment is to operate a powerrecycled Broadband RSE interferometer with suspended optics and to achieve diagonalization of length signals of the central part of the interferometer directly through the optical setup. Details of the 4m RSE interferometer control method as well as the design of the experimental setup will be presented

    Development of a control scheme of homodyne detection for extracting ponderomotive squeezing from a Michelson interferometer

    Get PDF
    We developed a control scheme of homodyne detection. To operate the homodyne detector as easy as possible, a simple Michelson interferometer is used. Here a motivation that the control scheme of the homodyne detection is developed is for our future experiment of extracting the ponderomotively squeezed vacuum fluctuations. To obtain the best signalto- noise ratio using the homodyne detection, the homodyne phase should be optimized. The optimization of the homodyne phase is performed by changing a phase of a local oscillator for the homodyne detection from a point at which a signal is maximized. In fact, in this experiment, using the developed control scheme, we locked the Michelson interferometer with the homodyne detector and changed the phase of the local oscillator for the homodyne detection. Then, we measured signals quantity changed by changing the phase of the local oscillator for the homodyne detection. Here we used the output from the homodyne detection as the signal

    Downselect of the signal extraction scheme for LCGT

    Get PDF
    Large Cryogenic Gravitational wave Telescope (LCGT) is the future Japanese gravitational-wave detector. It will employ the broadband resonant sideband extraction (RSE) as its optical configuration. We compared four signal extraction schemes that have been proposed so as to downselect one of them as the scheme for LCGT. The selected scheme uses the phase and amplitude modulation sidebands: the phase modulation sidebands transmitting to the antisymmetric port (AP) and the amplitude modulation sidebands reffected to the symmetric port (SP) by the functions of the Michelson asymmetry. Using these sidebands, a new technique called 'delocation' is applicable. One advantage is that the control signals of the undesired signals do not appear at the AP, where the differential signals appear

    Ultra-stable performance of an underground-based laser interferometer observatory for gravitational waves

    Full text link
    In order to detect the rare astrophysical events that generate gravitational wave (GW) radiation, sufficient stability is required for GW antennas to allow long-term observation. In practice, seismic excitation is one of the most common disturbances effecting stable operation of suspended-mirror laser interferometers. A straightforward means to allow more stable operation is therefore to locate the antenna, the ``observatory'', at a ``quiet'' site. A laser interferometer gravitational wave antenna with a baseline length of 20m (LISM) was developed at a site 1000m underground, near Kamioka, Japan. This project was a unique demonstration of a prototype laser interferometer for gravitational wave observation located underground. The extremely stable environment is the prime motivation for going underground. In this paper, the demonstrated ultra-stable operation of the interferometer and a well-maintained antenna sensitivity are reported.Comment: 8 pages, to appear on PR

    Unifying flipped SU(5) in five dimensions

    Full text link
    It is shown that embedding a four-dimensional flipped SU(5) model in a five-dimensional SO(10) model, preserves the best features of both flipped SU(5) and SO(10). The missing partner mechanism, which naturally achieves both doublet-triplet splitting and suppression of d=5 proton decay operators, is realized as in flipped SU(5), while the gauge couplings are unified as in SO(10). The masses of down quarks and charged leptons, which are independent in flipped SU(5), are related by the SO(10). Distinctive patterns of quark and lepton masses can result. The gaugino mass M_1 is independent of M_3 and M_2, which are predicted to be equal.Comment: revised version-to appear in PRD, 23 pages, 3 figures, ReVTeX

    Sfermion Mass Degeneracy, Superconformal Dynamics and Supersymmetric Grand Unified Theories

    Get PDF
    We discuss issues in a scenario that hierarchical Yukawa couplings are generated through strong dynamics of superconformal field theories (SCFTs). Independently of mediation mechanism of supersymmetry breaking, infrared convergence property of SCFTs can provide an interesting solution to supersymmetric flavor problem; sfermion masses are suppressed around the decoupling scale of SCFTs and eventually become degenerate to some degree, thanks to family-independent radiative corrections governed by the SM gaugino masses. We discuss under what conditions the degeneracy of sfermion mass can be estimated in a simple manner. We also discuss the constraints from lepton flavor violations. We then study explicitly sfermion mass degeneracy within the framework of grand unified theories coupled to SCFTs. It is found that the degeneracy for right-handed sleptons becomes worse in the conventional SU(5) model than in the MSSM. On the other hand, in the flipped SU(5) \times U(1) model, each right-handed lepton is still an SU(5)-singlet, whereas the bino mass M_1 is determined by two independent gaugino masses of SU(5) \times U(1). These two properties enable us to have an improved degeneracy for the right-handed sleptons. We also speculate how further improvement can be obtained in the SCFT approach.Comment: 24 pages, latex, 4 figure

    Cosmological perturbations of self-accelerating universe in nonlinear massive gravity

    Full text link
    We study cosmological perturbations of self-accelerating universe solutions in the recently proposed nonlinear theory of massive gravity, with general matter content. While the broken diffeomorphism invariance implies that there generically are 2 tensor, 2 vector and 2 scalar degrees of freedom in the gravity sector, we find that the scalar and vector degrees have vanishing kinetic terms and nonzero mass terms. Depending on their nonlinear behavior, this indicates either nondynamical nature of these degrees or strong couplings. Assuming the former, we integrate out the 2 vector and 2 scalar degrees of freedom. We then find that in the scalar and vector sectors, gauge-invariant variables constructed from metric and matter perturbations have exactly the same quadratic action as in general relativity. The difference from general relativity arises only in the tensor sector, where the graviton mass modifies the dispersion relation of gravitational waves, with a time-dependent effective mass. This may lead to modification of stochastic gravitational wave spectrum.Comment: 32 pages, 1 figure; v2: minor update to match the published versio

    Lifting a Realistic SO(10) Grand Unified Model to Five Dimensions

    Get PDF
    It has been shown recently that the problem of rapid proton decay induced by dimension five operators arising from the exchange of colored Higgsinos can be simply avoided in grand unified models where a fifth spatial dimension is compactified on an orbifold. Here we demonstrate that this idea can be used to solve the Higgsino-mediated proton decay problem in any realistic SO(10) model by lifting that model to five dimensions. A particular SO(10) model that has been proposed to explain the pattern of quark and lepton masses and mixings is used as an example. The idea is to break the SO(10) down to the Pati-Salam symmetry by the orbifold boundary conditions. The entire four-dimensional SO(10) model is placed on the physical SO(10) brane except for the gauge fields, the 45 and a single 10 of Higgs fields, which are placed in the five-dimensional bulk. The structure of the Higgs superpotential can be somewhat simplified in doing so, while the Yukawa superpotential and mass matrices derived from it remain essentially unaltered.Comment: 17 pages, version to be published in Phys. Rev. D with expanded discussion of the suppression of dim-5 proton decay operator

    Possible Candidates for SUSY SO(10) Model with an Intermediate Scale

    Full text link
    We study the possibility of an intermediate scale existing in supersymmetric SO(10) grand unified theories: The intermediate scale is demanded to be around 10^{12} GeV so that neutrinos can obtain masses suitable for explaining the experimental data on the deficit of solar neutrino with Mikheev-Smirnov-Wolfenstein solution and the existence of hot dark matter. We show that any Pati-Salam type intermediate symmetries are excluded by requiring reasonable conditions and only SU(2)L×SU(2)R×SU(3)C×U(1)BLSU(2)_L\times SU(2)_R \times SU(3)_C\times U(1)_{B-L} is likely to be realized as an intermediate symmetry.Comment: LaTeX, 8 pages + 1 uuencoded eps figure (Error corrected
    corecore