1,537 research outputs found

    Intersecting D-brane states derived from the KP theory

    Full text link
    A general scheme to find tachyon boundary states is developed within the framework of the theory of KP hierarchy. The method is applied to calculate correlation function of intersecting D-branes and rederived the results of our previous works as special examples. A matrix generalization of this scheme provides a method to study dynamics of coincident multi D-branes.Comment: 10 page

    R-Process Nucleosynthesis in MHD Jet Explosions of Core-Collapse Supernovae

    Full text link
    We investigate rr-process nucleosynthesis during the magnetohydrodynamical (MHD) explosion of supernova in a massive star of 13 MM_{\odot}. Contrary to the case of the spherical explosion, jet-like explosion due to the combined effects of the rotation and magnetic field lowers the electron fraction significantly inside the layers above the iron core. We find that the ejected material of low electron fraction responsible for the rr-process comes out from the silicon rich layer of the presupernova model. This leads to the production up to the third peak in the solar rr-process elements. We examine whether the fission affects the rr-process paths by using the full nuclear reaction network with both the spontaneous and β\beta-delayed fission included. Moreover, we pay particular attention how the mass formula affects the rr-process peaks with use of two mass formulae. It is found that both formulae can reproduce the global abundance pattern up to the third peak though detailed distributions are rather different. We point out that there are variations in the rr-process nucleosynthesis if the MHD effects play an important role in the supernova explosion.Comment: 19 pages with 7 figures, submitted to Ap

    Distinct doping dependences of the pseudogap and superconducting gap La2x_{2-x}Srx_{x}CuO4_4 cuprate superconductors

    Full text link
    We have performed a temperature-dependent angle-integrated photoemission study of lightly-doped to heavily-overdoped La2x_{2-x}Srx_{x}CuO4_4 and oxygen-doped La2_2CuO4.10_{4.10}. We found that both the magnitude Δ\Delta* of the (small) pseudogap and the temperature \textit{T}* at which the pseudogap is opened increases with decreasing hole concentration, consistent with previous studies. On the other hand, the superconducting gap Δsc\Delta_{sc} was found to remain small for decreasing hole concentration. The results can be explained if the superconducting gap opens only on the Fermi arc around the nodal (0,0)-(π,π\pi,\pi) direction while the pseudogap opens around \sim(π\pi, 0).Comment: 4 pages, 3 figure

    Explosive Nucleosynthesis in Axisymmetrically Deformed Type II Supernovae

    Get PDF
    Explosive nucleosynthesis under the axisymmetric explosion in Type II supernova has been performed by means of two dimensional hydrodynamical calculations. We have compared the results with the observations of SN 1987A. Our chief findings are as follows: (1) 44Ti^{44}Ti is synthesized so much as to explain the tail of the bolometric light curve of SN 1987A. We think this is because the alpha-rich freezeout takes place more actively under the axisymmetric explosion. (2) 57Ni^{57}Ni and 58Ni^{58}Ni tend to be overproduced compared with the observations. However, this tendency relies strongly on the progenitor's model. We have also compared the abundance of each element in the mass number range A=1673A= 16-73 with the solar values. We have found three outstanding features. (1) For the nuclei in the range A=1640A=16-40, their abundances are insensitive to the initial form of the shock wave. This insensitivity is favored since the spherical calculations thus far can explain the solar system abundances in this mass range. (2) There is an enhancement around A=45 in the axisymmetric explosion compared with the spherical explosion fairly well. In particular, 44Ca^{44}Ca, which is underproduced in the present spherical calculations, is enhanced significantly. (3) In addition, there is an enhancement around A=65. This tendency does not rely on the form of the mass cut but of the initial shock wave. This enhancement may be the problem of the overproduction in this mass range, although this effect would be relatively small since Type I supernovae are chiefly responsible for this mass number range.Comment: 32 pages, 12 figures, LaTe

    Simulation of Transitions between "Pasta" Phases in Dense Matter

    Full text link
    Calculations of equilibrium properties of dense matter predict that at subnuclear densities nuclei can be rodlike or slablike. To investigate whether transitions between phases with non-spherical nuclei can occur during the collapse of a star, we perform quantum molecular dynamic simulations of the compression of dense matter. We have succeeded in simulating the transitions between rodlike and slablike nuclei and between slablike nuclei and cylindrical bubbles. Our results strongly suggest that non-spherical nuclei can be formed in the inner cores of collapsing stars.Comment: 4 pages, 4 figures, final version published in Phys. Rev. Lett., high-res figures can be seen at http://www.nordita.dk/~gentaro/research/fig

    Identification of Optical Component of North Toroidal Source of Sporadic Meteors and its Origin

    Get PDF
    We succeeded to identify the North Toroidal source by optical observations performed by the SonotaCo Network, which is a TV observation network coordinated by Japanese amateurs. This source has been known only for radar observations until now. The orbits of the optical meteors in the North Toroidal source are relatively large eccentricity and semi-major axis, compared with those of the radar meteors. In this paper, we report the characteristics of this North Toroidal source detected by optical observations, and discuss the possible origin and evolution of this source

    Electron screening in the liquid-gas mixed phases of nuclear matter

    Full text link
    Screening effects of electrons on inhomogeneous nuclear matter, which includes spherical, slablike, and rodlike nuclei as well as spherical and rodlike nuclear bubbles, are investigated in view of possible application to cold neutron star matter and supernova matter at subnuclear densities. Using a compressible liquid-drop model incorporating uncertainties in the surface tension, we find that the energy change due to the screening effects broadens the density region in which bubbles and nonspherical nuclei appear in the phase diagram delineating the energetically favorable shape of inhomogeneous nuclear matter. This conclusion is considered to be general since it stems from a model-independent feature that the electron screening acts to decrease the density at which spherical nuclei become unstable against fission and to increase the density at which uniform matter becomes unstable against proton clustering.Comment: 12 pages, 8 figures, accepted for publication in Physical Review
    corecore