21 research outputs found

    Identification of a 1.6 kb genome locus of guinea pig cytomegalovirus required for efficient viral growth in animals but not in cell culture

    Get PDF
    AbstractGuinea pig cytomegalovirus (GPCMV) provides a useful model for studies of congenital CMV infection. During characterization of the GPCMV genome sequence, we identified two types of strains in a virus stock purchased from ATCC. One of them, GPCMV/del, lacks a 1.6 kb locus that positionally corresponds to murine CMV (MCMV) M129–M133. Growth of GPCMV/del in cell culture was marginally better than that of the other strain, GPCMV/full, which harbors the 1.6 kb locus. However, in animals infected intraperitoneally with virus stocks containing both strains, GPCMV/full disseminated more efficiently than GPCMV/del, including 200-fold greater viral load in salivary glands. Viral DNA, transcripts of the immediate-early 2 gene homolog, and viral antigens were more abundant in animals infected with GPCMV/full than in those infected with GPCMV/del. Although the observed phenomena have some similarity with the growth properties of MCMV strains defective in mck-1/mck-2(M129/131) and those defective in sgg(M132), no M129–M132 homologs were found in the 1.6 kb locus. Since one of the ORFs in the locus has a weak sequence similarity with HCMV UL130, which relates to cell tropism, further studies will be required to learn the mechanism for efficient GPCMV growth in animal

    Plasma Expansion in H<sub>2</sub>, He, Ar, and H<sub>2</sub>-He Plasma

    No full text

    Effect of High-Energy Electrons Component on Recombination Plasma with Pulse Plasma Flow

    No full text

    Heating by an Electron Bernstein Wave in a Spherical Tokamak Plasma via Mode Conversion

    Get PDF
    The first successful high power heating of a high dielectric constant spherical tokamak plasma by an electron Bernstein wave (EBW) is reported. An EBW was excited by mode conversion (MC) of an X mode cyclotron wave injected from the low magnetic field side of the TST-2 spherical tokamak. Evidence of electron heating was observed as increases in the stored energy and soft x-ray emission. The increased emission was concentrated in the plasma core region. A heating efficiency of over 50% was achieved, when the density gradient in the MC region was sufficiently steep

    First Ohmic Discharge Assisted with RF Power in QUEST Spherical Tokamak

    No full text
    Ohmic plasma currents of up to 17 kA with a discharge duration of 0.32 s have been obtained in the Kyushu University Experiment with Steady-State Spherical Tokamak (QUEST) with the help of electron cyclotron wave (ECW) and cancellation coils (CCs). The CCs, originally installed to create a field null in the plasma breakdown phase, are essential for producing plasma current in QUEST. Although the ohmic coil current is initially biased and then reduced completely to zero to induce the plasma current in 15-20 ms, we demonstrate that the flat top of the plasma current exceeding 20 ms is maintained by the vertical field after the ohmic current is switched off. This type of operation is quite favorable for extending pulsed operation to the steady state by electron Bernstein wave current drive (EBCD).Ohmic plasma currents of up to 17 kA with a discharge duration of 0.32 s have been obtained in the Kyushu University Experiment with Steady-State Spherical Tokamak (QUEST) with the help of electron cyclotron wave (ECW) and cancellation coils (CCs). The CCs, originally installed to create a field null in the plasma breakdown phase, are essential for producing plasma current in QUEST. Although the ohmic coil current is initially biased and then reduced completely to zero to induce the plasma current in 15-20 ms, we demonstrate that the flat top of the plasma current exceeding 20 ms is maintained by the vertical field after the ohmic current is switched off. This type of operation is quite favorable for extending pulsed operation to the steady state by electron Bernstein wave current drive (EBCD)

    First Ohmic Discharge Assisted with RF Power in QUEST Spherical Tokamak

    No full text
    Ohmic plasma currents of up to 17 kA with a discharge duration of 0.32 s have been obtained in the Kyushu University Experiment with Steady-State Spherical Tokamak (QUEST) with the help of electron cyclotron wave (ECW) and cancellation coils (CCs). The CCs, originally installed to create a field null in the plasma breakdown phase, are essential for producing plasma current in QUEST. Although the ohmic coil current is initially biased and then reduced completely to zero to induce the plasma current in 15-20 ms, we demonstrate that the flat top of the plasma current exceeding 20 ms is maintained by the vertical field after the ohmic current is switched off. This type of operation is quite favorable for extending pulsed operation to the steady state by electron Bernstein wave current drive (EBCD).Ohmic plasma currents of up to 17 kA with a discharge duration of 0.32 s have been obtained in the Kyushu University Experiment with Steady-State Spherical Tokamak (QUEST) with the help of electron cyclotron wave (ECW) and cancellation coils (CCs). The CCs, originally installed to create a field null in the plasma breakdown phase, are essential for producing plasma current in QUEST. Although the ohmic coil current is initially biased and then reduced completely to zero to induce the plasma current in 15-20 ms, we demonstrate that the flat top of the plasma current exceeding 20 ms is maintained by the vertical field after the ohmic current is switched off. This type of operation is quite favorable for extending pulsed operation to the steady state by electron Bernstein wave current drive (EBCD)
    corecore