332 research outputs found

    CompaGB: An open framework for genome browsers comparison

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tools to visualize and explore genomes hold a central place in genomics and the diversity of genome browsers has increased dramatically over the last few years. It often turns out to be a daunting task to compare and choose a well-adapted genome browser, as multidisciplinary knowledge is required to carry out this task and the number of tools, functionalities and features are overwhelming.</p> <p>Findings</p> <p>To assist in this task, we propose a community-based framework based on two cornerstones: (i) the implementation of industry promoted software qualification method (QSOS) adapted for genome browser evaluations, and (ii) a web resource providing numerous facilities either for visualizing comparisons or performing new evaluations. We formulated 60 criteria specifically for genome browsers, and incorporated another 65 directly from QSOS's generic section. Those criteria aim to answer versatile needs, ranging from a biologist whose interest primarily lies into user-friendly and informative functionalities, a bioinformatician who wants to integrate the genome browser into a wider framework, or a computer scientist who might choose a software according to more technical features. We developed a dedicated web application to enrich the existing QSOS functionalities (weighting of criteria, user profile) with features of interest to a community-based framework: easy management of evolving data, user comments...</p> <p>Conclusions</p> <p>The framework is available at <url>http://genome.jouy.inra.fr/CompaGB</url>. It is open to anyone who wishes to participate in the evaluations. It helps the scientific community to (1) choose a genome browser that would better fit their particular project, (2) visualize features comparatively with easily accessible formats, such as tables or radar plots and (3) perform their own evaluation against the defined criteria. To illustrate the CompaGB functionalities, we have evaluated seven genome browsers according to the implemented methodology. A summary of the features of the compared genome browsers is presented and discussed.</p

    High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor

    Get PDF
    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structurefunction relationship of GPCRs. Β© 2014 Bill et al

    Evidence for Direct CP Violation in B0 -> K+- pi-+ Decays

    Full text link
    We report evidence for direct CP violation in the decay B0 -> K+-pi-+ with 253/fb of data collected with the Belle detector at the KEKB e+e- collider. Using 275 million B B_bar pairs we observe a B -> K+-pi-+ signal with 2140+-53 events. The measured CP violating asymmetry is Acp(K+-pi-+) = -0.101+-0.025 (stat)+-0.005 (syst), corresponding to a significance of 3.9 sigma including systematics. We also search for CP violation in the decays B+- -> K+-pi0 and B+- -> pi+-pi0. The measured CP violating asymmetries are Acp(K+-pi0) = 0.04+-0.05(stat)+-0.02(syst) and Acp(pi+-pi0) = -0.02+-0.10(stat)+-0.01(syst), corresponding to the intervals -0.05 < Acp(K+-pi0) < 0.13 and -0.18<Acp(pi+-pi0)<0.14 at 90% confidence level.Comment: 9 pages, 3 figures. submitted to Physical Review Letter

    Time-Dependent CP Violation Effects in Partially Reconstructed B0β†’Dβˆ—Ο€B^0 \to D^* \pi Decays

    Full text link
    We report measurements of time-dependent decay rates for B0β†’Dβˆ—βˆ“Ο€Β±B^0 \to D^{*\mp} \pi^\pm decays and extraction of CP violation parameters related to Ο•3\phi_3. We use a partial reconstruction technique, whereby signal events are identified using information only from the primary pion and the charged pion from the decay of the Dβˆ—βˆ“D^{*\mp}. The analysis uses 140fbβˆ’1140 {\rm fb}^{-1} of data accumulated at the Ξ₯(4S)\Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+eβˆ’e^{+}e^{-} collider. We measure the CP violation parameters S+=0.035Β±0.041(stat)Β±0.018(syst)S^+ = 0.035 \pm 0.041 ({\rm stat}) \pm 0.018 ({\rm syst}) and Sβˆ’=0.025Β±0.041(stat)Β±0.018(syst)S^- = 0.025 \pm 0.041 ({\rm stat}) \pm 0.018 ({\rm syst}).Comment: 15 pages, 5 figures. To appear in Physics Letters

    Phosphoinositide-binding interface proteins involved in shaping cell membranes

    Get PDF
    The mechanism by which cell and cell membrane shapes are created has long been a subject of great interest. Among the phosphoinositide-binding proteins, a group of proteins that can change the shape of membranes, in addition to the phosphoinositide-binding ability, has been found. These proteins, which contain membrane-deforming domains such as the BAR, EFC/F-BAR, and the IMD/I-BAR domains, led to inward-invaginated tubes or outward protrusions of the membrane, resulting in a variety of membrane shapes. Furthermore, these proteins not only bind to phosphoinositide, but also to the N-WASP/WAVE complex and the actin polymerization machinery, which generates a driving force to shape the membranes

    Albumin-Associated Lipids Regulate Human Embryonic Stem Cell Self-Renewal

    Get PDF
    BACKGROUND: Although human embryonic stem cells (hESCs) hold great promise as a source of differentiated cells to treat several human diseases, many obstacles still need to be surmounted before this can become a reality. First among these, a robust chemically-defined system to expand hESCs in culture is still unavailable despite recent advances in the understanding of factors controlling hESC self-renewal. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we attempted to find new molecules that stimulate long term hESC self-renewal. In order to do this, we started from the observation that a commercially available serum replacement product has a strong positive effect on the expansion of undifferentiated hESCs when added to a previously reported chemically-defined medium. Subsequent experiments demonstrated that the active ingredient within the serum replacement is lipid-rich albumin. Furthermore, we show that this activity is trypsin-resistant, strongly suggesting that lipids and not albumin are responsible for the effect. Consistent with this, lipid-poor albumin shows no detectable activity. Finally, we identified the major lipids bound to the lipid-rich albumin and tested several lipid candidates for the effect. CONCLUSIONS/SIGNIFICANCE: Our discovery of the role played by albumin-associated lipids in stimulating hESC self-renewal constitutes a significant advance in the knowledge of how hESC pluripotency is maintained by extracellular factors and has important applications in the development of increasingly chemically defined hESC culture systems

    Evidence for direct CP violation in B-0 -> K+pi(-) decays

    Get PDF
    We report evidence for direct CP violation in the decay B-0-->K(+)pi(-) with 253 fb(-1) of data collected with the Belle detector at the KEKB e(+)e(-) collider. Using 275x10(6) B(B) over bar pairs we observe a B-->K(+/-)pi(-/+) signal with 2140+/-53 events. The measured CP violating asymmetry is A(CP)(K(+)pi(-))=-0.101+/-0.025(stat)+/-0.005(syst), corresponding to a significance of 3.9sigma including systematics. We also search for CP violation in the decays B+-->K(+)pi(0) and B+-->pi(+)pi(0). The measured CP violating asymmetries are A(CP)(K(+)pi(0))=0.04+/-0.05(stat)+/-0.02(syst) and A(CP)(pi(+)pi(0))=-0.02+/-0.10(stat)+/-0.01(syst), corresponding to the intervals -0.05< A(CP)(K(+)pi(0))<0.13 and -0.18< A(CP)(pi(+)pi(0))<0.14 at 90% confidence level

    Topological and Functional Characterization of an Insect Gustatory Receptor

    Get PDF
    Insect gustatory receptors are predicted to have a seven-transmembrane structure and are distantly related to insect olfactory receptors, which have an inverted topology compared with G-protein coupled receptors, including mammalian olfactory receptors. In contrast, the topology of insect gustatory receptors remains unknown. Except for a few examples from Drosophila, the specificity of individual insect gustatory receptors is also unknown. In this study, the total number of identified gustatory receptors in Bombyx mori was expanded from 65 to 69. BmGr8, a silkmoth gustatory receptor from the sugar receptor subfamily, was expressed in insect cells. Membrane topology studies on BmGr8 indicate that, like insect olfactory receptors, it has an inverted topology relative to G protein-coupled receptors. An orphan GR from the bitter receptor family, BmGr53, yielded similar results. We infer, from the finding that two distantly related BmGrs have an intracellular N-terminus and an odd number of transmembrane spans, that this is likely to be a general topology for all insect gustatory receptors. We also show that BmGr8 functions independently in Sf9 cells and responds in a concentration-dependent manner to the polyalcohols myo-inositol and epi-inositol but not to a range of mono- and di-saccharides. BmGr8 is the first chemoreceptor shown to respond specifically to inositol, an important or essential nutrient for some Lepidoptera. The selectivity of BmGr8 responses is consistent with the known responses of one of the gustatory receptor neurons in the lateral styloconic sensilla of B. mori, which responds to myo-inositol and epi-inositol but not to allo-inositol
    • …
    corecore