13 research outputs found

    Anomalous Hall effect triggered by pressure-induced magnetic phase transition in α-Mn

    Get PDF
    Recent interest in topological nature in condensed matter physics has revealed the essential role of Berry curvature in the anomalous Hall effect (AHE). However, since a large Hall response originating from Berry curvature has been reported in quite limited materials, the detailed mechanism remains unclear at present. Here, we report the discovery of a large AHE triggered by a pressure-induced magnetic phase transition in elemental α-Mn. The AHE is absent in the noncollinear antiferromagnetic phase at ambient pressure, whereas a large AHE is observed in the weak ferromagnetic phase under high pressure despite the small magnetization of ≈0.02μB/Mn. Our results indicate that the emergence of the AHE in α-Mn is governed by the symmetry of the underlying magnetic structure, providing a direct evidence of a switch between a zero and nonzero contribution of the Berry curvature across the phase boundary. α-Mn can be an elemental and tunable platform to reveal the role of Berry curvature in AHE

    Staking Recovery Hopes on Soma Revival Rice

    Full text link

    Mass production system for RNA-loaded lipid nanoparticles using piling up microfluidic devices

    No full text
    Microfluidic devices are widely used in lipid nanoparticle (LNP)-based vaccines and nanomedicine research. These devices should be stiff enough to withstand the high flow rate for the mass production of LNPs, and malleable enough to use when fabricating complicated microchannel or micromixer structures, such as stag-gering herringbone micromixers. Due to the limitations of the available fabrication methods, optimal micro -fluidic devices have not yet been developed. In this study, we report the development of a glass-based microfluidic device based on the invasive Lipid Nanoparticle Production (iLiNP) device (R) reported previously. The LNP size controllability of glass-based iLiNP device was similar to that of the poly(dimethylsiloxane) (PDMS)-based iLiNP device, and the glass-iLiNP device was used for mRNA-loaded LNP production with ionizable lipids used for COVID-19 mRNA vaccines. We also demonstrate a piling-and numbering-up strategy based on glass-iLiNP device. The iLiNP unit composed of five-layered microchannels was fabricated by piling-up each glass-iLiNP device followed by parallelization (numbering-up) for the mass production of LNPs. This iLiNP system can produce LNPs with sizes ranging between 20 and 60 nm at a flow rate of 20-50 mL/min, and its performance is comparable to that of the commercially available microfluidic system like NanoAssemblr (R)
    corecore