4 research outputs found
Image_3_Genomic and phenotypic characterization of multidrug-resistant Salmonella enterica serovar Reading isolates involved in a turkey-associated foodborne outbreak.jpg
Salmonella is a global bacterial foodborne pathogen associated with a variety of contaminated food products. Poultry products are a common source of Salmonella-associated foodborne illness, and an estimated 7% of human illnesses in the United States are attributed to turkey products. From November 2017 to March 2019, the Centers for Disease Control and Prevention reported a turkey-associated outbreak of multidrug-resistant (MDR; resistant to ≥3 antimicrobial classes) Salmonella enterica serovar Reading (S. Reading) linked to 358 human infections in 42 US states and Canada. Since S. Reading was seldom linked to human illness prior to this outbreak, the current study compared genomic sequences of S. Reading isolates prior to the outbreak (pre-outbreak) to isolates identified during the outbreak period, focusing on genes that were different between the two groups but common within a group. Following whole-genome sequence analysis of five pre-outbreak and five outbreak-associated turkey/turkey product isolates of S. Reading, 37 genes located within two distinct chromosomal regions were identified only in the pre-outbreak isolates: (1) an ~5 kb region containing four protein-coding genes including uidA which encodes beta-glucuronidase, pgdA encoding peptidoglycan deacetylase, and two hypothetical proteins and (2) an ~28 kb region comprised of 32 phage-like genes and the xerC gene, which encodes tyrosine recombinase (frequently associated with phage genes). The five outbreak isolates also had a deletional event within the cirA gene, introducing a translational frame shift and premature stop codon. The cirA gene encodes a protein with dual receptor functions: a siderophore receptor for transport of dihydroxybenzoylserine as well as a colicin Ia/b receptor. Significant differences for the identified genetic variations were also detected in 75 S. Reading human isolates. Of the 41 S. Reading isolates collected before or in 2017, 81 and 90% of the isolates contained the uidA and pgdA genes, respectively, but only 24% of the isolates collected after 2017 harbored the uidA and pgdA genes. The truncation event within the cirA gene was also significantly higher in isolates collected after 2017 (74%) compared to before or in 2017 (5%). Phenotypic analysis of the S. Reading isolates for colicin and cefiderocol sensitivities (CirA) and β-methyl-D-glucuronic acid utilization (UidA and accessory proteins) supported the genomic data. Overall, a similar genome reduction pattern was generally observed in both the turkey and human isolates of S. Reading during the outbreak period, and the genetic differences were present in genes that could potentially promote pathogen dissemination due to variation in Salmonella colonization, fitness, and/or virulence.</p
Image_2_Genomic and phenotypic characterization of multidrug-resistant Salmonella enterica serovar Reading isolates involved in a turkey-associated foodborne outbreak.jpg
Salmonella is a global bacterial foodborne pathogen associated with a variety of contaminated food products. Poultry products are a common source of Salmonella-associated foodborne illness, and an estimated 7% of human illnesses in the United States are attributed to turkey products. From November 2017 to March 2019, the Centers for Disease Control and Prevention reported a turkey-associated outbreak of multidrug-resistant (MDR; resistant to ≥3 antimicrobial classes) Salmonella enterica serovar Reading (S. Reading) linked to 358 human infections in 42 US states and Canada. Since S. Reading was seldom linked to human illness prior to this outbreak, the current study compared genomic sequences of S. Reading isolates prior to the outbreak (pre-outbreak) to isolates identified during the outbreak period, focusing on genes that were different between the two groups but common within a group. Following whole-genome sequence analysis of five pre-outbreak and five outbreak-associated turkey/turkey product isolates of S. Reading, 37 genes located within two distinct chromosomal regions were identified only in the pre-outbreak isolates: (1) an ~5 kb region containing four protein-coding genes including uidA which encodes beta-glucuronidase, pgdA encoding peptidoglycan deacetylase, and two hypothetical proteins and (2) an ~28 kb region comprised of 32 phage-like genes and the xerC gene, which encodes tyrosine recombinase (frequently associated with phage genes). The five outbreak isolates also had a deletional event within the cirA gene, introducing a translational frame shift and premature stop codon. The cirA gene encodes a protein with dual receptor functions: a siderophore receptor for transport of dihydroxybenzoylserine as well as a colicin Ia/b receptor. Significant differences for the identified genetic variations were also detected in 75 S. Reading human isolates. Of the 41 S. Reading isolates collected before or in 2017, 81 and 90% of the isolates contained the uidA and pgdA genes, respectively, but only 24% of the isolates collected after 2017 harbored the uidA and pgdA genes. The truncation event within the cirA gene was also significantly higher in isolates collected after 2017 (74%) compared to before or in 2017 (5%). Phenotypic analysis of the S. Reading isolates for colicin and cefiderocol sensitivities (CirA) and β-methyl-D-glucuronic acid utilization (UidA and accessory proteins) supported the genomic data. Overall, a similar genome reduction pattern was generally observed in both the turkey and human isolates of S. Reading during the outbreak period, and the genetic differences were present in genes that could potentially promote pathogen dissemination due to variation in Salmonella colonization, fitness, and/or virulence.</p
Table_1_Genomic and phenotypic characterization of multidrug-resistant Salmonella enterica serovar Reading isolates involved in a turkey-associated foodborne outbreak.XLSX
Salmonella is a global bacterial foodborne pathogen associated with a variety of contaminated food products. Poultry products are a common source of Salmonella-associated foodborne illness, and an estimated 7% of human illnesses in the United States are attributed to turkey products. From November 2017 to March 2019, the Centers for Disease Control and Prevention reported a turkey-associated outbreak of multidrug-resistant (MDR; resistant to ≥3 antimicrobial classes) Salmonella enterica serovar Reading (S. Reading) linked to 358 human infections in 42 US states and Canada. Since S. Reading was seldom linked to human illness prior to this outbreak, the current study compared genomic sequences of S. Reading isolates prior to the outbreak (pre-outbreak) to isolates identified during the outbreak period, focusing on genes that were different between the two groups but common within a group. Following whole-genome sequence analysis of five pre-outbreak and five outbreak-associated turkey/turkey product isolates of S. Reading, 37 genes located within two distinct chromosomal regions were identified only in the pre-outbreak isolates: (1) an ~5 kb region containing four protein-coding genes including uidA which encodes beta-glucuronidase, pgdA encoding peptidoglycan deacetylase, and two hypothetical proteins and (2) an ~28 kb region comprised of 32 phage-like genes and the xerC gene, which encodes tyrosine recombinase (frequently associated with phage genes). The five outbreak isolates also had a deletional event within the cirA gene, introducing a translational frame shift and premature stop codon. The cirA gene encodes a protein with dual receptor functions: a siderophore receptor for transport of dihydroxybenzoylserine as well as a colicin Ia/b receptor. Significant differences for the identified genetic variations were also detected in 75 S. Reading human isolates. Of the 41 S. Reading isolates collected before or in 2017, 81 and 90% of the isolates contained the uidA and pgdA genes, respectively, but only 24% of the isolates collected after 2017 harbored the uidA and pgdA genes. The truncation event within the cirA gene was also significantly higher in isolates collected after 2017 (74%) compared to before or in 2017 (5%). Phenotypic analysis of the S. Reading isolates for colicin and cefiderocol sensitivities (CirA) and β-methyl-D-glucuronic acid utilization (UidA and accessory proteins) supported the genomic data. Overall, a similar genome reduction pattern was generally observed in both the turkey and human isolates of S. Reading during the outbreak period, and the genetic differences were present in genes that could potentially promote pathogen dissemination due to variation in Salmonella colonization, fitness, and/or virulence.</p
Image_1_Genomic and phenotypic characterization of multidrug-resistant Salmonella enterica serovar Reading isolates involved in a turkey-associated foodborne outbreak.jpg
Salmonella is a global bacterial foodborne pathogen associated with a variety of contaminated food products. Poultry products are a common source of Salmonella-associated foodborne illness, and an estimated 7% of human illnesses in the United States are attributed to turkey products. From November 2017 to March 2019, the Centers for Disease Control and Prevention reported a turkey-associated outbreak of multidrug-resistant (MDR; resistant to ≥3 antimicrobial classes) Salmonella enterica serovar Reading (S. Reading) linked to 358 human infections in 42 US states and Canada. Since S. Reading was seldom linked to human illness prior to this outbreak, the current study compared genomic sequences of S. Reading isolates prior to the outbreak (pre-outbreak) to isolates identified during the outbreak period, focusing on genes that were different between the two groups but common within a group. Following whole-genome sequence analysis of five pre-outbreak and five outbreak-associated turkey/turkey product isolates of S. Reading, 37 genes located within two distinct chromosomal regions were identified only in the pre-outbreak isolates: (1) an ~5 kb region containing four protein-coding genes including uidA which encodes beta-glucuronidase, pgdA encoding peptidoglycan deacetylase, and two hypothetical proteins and (2) an ~28 kb region comprised of 32 phage-like genes and the xerC gene, which encodes tyrosine recombinase (frequently associated with phage genes). The five outbreak isolates also had a deletional event within the cirA gene, introducing a translational frame shift and premature stop codon. The cirA gene encodes a protein with dual receptor functions: a siderophore receptor for transport of dihydroxybenzoylserine as well as a colicin Ia/b receptor. Significant differences for the identified genetic variations were also detected in 75 S. Reading human isolates. Of the 41 S. Reading isolates collected before or in 2017, 81 and 90% of the isolates contained the uidA and pgdA genes, respectively, but only 24% of the isolates collected after 2017 harbored the uidA and pgdA genes. The truncation event within the cirA gene was also significantly higher in isolates collected after 2017 (74%) compared to before or in 2017 (5%). Phenotypic analysis of the S. Reading isolates for colicin and cefiderocol sensitivities (CirA) and β-methyl-D-glucuronic acid utilization (UidA and accessory proteins) supported the genomic data. Overall, a similar genome reduction pattern was generally observed in both the turkey and human isolates of S. Reading during the outbreak period, and the genetic differences were present in genes that could potentially promote pathogen dissemination due to variation in Salmonella colonization, fitness, and/or virulence.</p