4 research outputs found

    Anticancer potential of Solanum lycopersicum L. extract in human lung epithelial cancer cells A549

    Get PDF
    The study aimed to reveal the phytochemical profile, free radical scavenging potential, and anticancer activity of Solanum lycopersicum L. leaf extract (SLLE). According to the study, SLLE contains plant secondary metabolites that are beneficial for health, like phenolics, flavonoids, ascorbic acid, alkaloids, and terpenoids. The SLLE has shown potential free radical scavenging potential in DPPH and ABTS free radical scavenging analysis and its EC50 values (concentration required to inhibit 50% of free radicals) were determined as 481.29 ± 33.82 and 527.56 ± 20.34 µg/mL, respectively. The SLLE has the ability to scavenge free radicals and could be used to treat illnesses brought on by oxidative stress. The anticancer activity of SLLE was assessed by MTT, LDH, micro-morphological, live/dead dual staining, and caspase-3 analysis. In the MTT assay, the IC50 value (concentration required to inhibit 50% of cell viability) of SLLE was determined as 190.41 ± 4.77 µg/mL. Furthermore, SLLE has shown potential anticancer activity by adversely affecting the plasma membrane integrity and escalating the caspase-3 levels. In the biomedical field, SLLE could be highly useful to treat cancer

    Not Available

    No full text
    Not Available: Isolation of high quality, intact high molecular weight genomic DNA from plants which are rich in polysaccharides, polyphenols, secondary metabolites and chemical heterogeneity is an immense problem in the field of plant biology. Several protocols have been developed for eliminating these tricky elements during the extraction of DNA, but none is found to be universally applicable. The purpose of the present study was to develop a reliable protocol for extracting high quality genomic DNA from polyphenols, polysaccharides and secondary metabolites rich plants like sweet sorghum. We made seven critical modifications to the available CTAB method to isolate genomic DNA from 25- and 60-d-old transgenic sweet sorghum leaf tissues. The yield of DNA ranged from 9.2– 10.2 µg from 200 mg of leaf tissue. An absorbance value of 1.8 at A260/A280 indicates that it’s free from RNA and protein contamination. PCR analysis using bar primers shows a consistent and reliable amplification product at 475 bp. This method is highly suitable for extracting high quality genomic DNA from plants with high levels of polysaccharides and polyphenolics without blending commercial kits. Our protocol facilitates the processing of large number of plant samples for genomic analysis, mapping and next generation sequencing.Not Availabl

    A Simple and Efficient Method for High Quality DNA Extraction from Sweet Sorghum [Sorghum bicolor (L.) Moench]

    No full text
    Not AvailableIsolation of high quality, intact high molecular weight genomic DNA from plants which are rich in polysaccharides, polyphenols, secondary metabolites and chemical heterogeneity is an immense problem in the field of plant biology. Several protocols have been developed for eliminating these tricky elements during the extraction of DNA, but none is found to be universally applicable. The purpose of the present study was to develop a reliable protocol for extracting high quality genomic DNA from polyphenols, polysaccharides and secondary metabolites rich plants like sweet sorghum. We made seven critical modifications to the available CTAB method to isolate genomic DNA from 25- and 60-d-old transgenic sweet sorghum leaf tissues. The yield of DNA ranged from 9.2– 10.2 µg from 200 mg of leaf tissue. An absorbance value of 1.8 at A260/A280 indicates that it’s free from RNA and protein contamination. PCR analysis using bar primers shows a consistent and reliable amplification product at 475 bp. This method is highly suitable for extracting high quality genomic DNA from plants with high levels of polysaccharides and polyphenolics without blending commercial kits. Our protocol facilitates the processing of large number of plant samples for genomic analysis, mapping and next generation sequencing.Not Availabl

    Anticancer potential of Solanum lycopersicum L. extract in human lung epithelial cancer cells A549

    No full text
    76-85The study aimed to reveal the phytochemical profile, free radical scavenging potential, and anticancer activity of Solanum lycopersicum L. leaf extract (SLLE). According to the study, SLLE contains plant secondary metabolites that are beneficial for health, like phenolics, flavonoids, ascorbic acid, alkaloids, and terpenoids. The SLLE has shown potential free radical scavenging potential in DPPH and ABTS free radical scavenging analysis and its EC50 values (concentration required to inhibit 50% of free radicals) were determined as 481.29 ± 33.82 and 527.56 ± 20.34 μg/mL, respectively. The SLLE has the ability to scavenge free radicals and could be used to treat illnesses brought on by oxidative stress. The anticancer activity of SLLE was assessed by MTT, LDH, micro-morphological, live/dead dual staining, and caspase-3 analysis. In the MTT assay, the IC50 value (concentration required to inhibit 50% of cell viability) of SLLE was determined as 190.41 ± 4.77 μg/mL. Furthermore, SLLE has shown potential anticancer activity by adversely affecting the plasma membrane integrity and escalating the caspase-3 levels. In the biomedical field, SLLE could be highly useful to treat cancer
    corecore