37 research outputs found

    A paradox of immunodeficiency and inflammation in human aging: lessons learned from apoptosis

    Get PDF
    Aging is associated with a paradox of immunodeficiency and inflammation (an evidence of hyperactive immune system). Apoptosis is associated with cellular depletion and suppression of inflammatory response. In this brief review, we will present evidence for the role of increased apoptosis in immunodeficiency and paradoxical increased inflammation associated with human aging. In particular, a role of apoptotic cells in failure to generate anti-inflammatory responses and directly activating inflammatory responses will be discussed

    Life and death of lymphocytes: a role in immunesenescence

    Get PDF
    Human aging is associated with progressive decline in immune functions, increased frequency of infections. Among immune functions, a decline in T cell functions during aging predominates. In this review, we will discuss the molecular signaling in two major pathways of apoptosis, namely death receptor pathway and mitochondrial pathway, and their alterations in both T and B lymphocytes in human aging with a special emphasis on naïve and different memory subsets of CD8+ T cells. We will also discuss a possible role of lymphocyte apoptosis in immune senescence

    Impaired Functions of Peripheral Blood Monocyte Subpopulations in Aged Humans

    Get PDF
    Aging is associated with increased susceptibility to microbial infections, and monocytes play an important role in microbial defense. In this study, we have identified and compared four subpopulations of monocytes (CD14++(high)CD16−, CD14+(low)CD16−, CD14++(high)CD16+, and CD14+(low)CD16+) in the peripheral blood of young and aged subjects with regard to their numbers, cytokine production, TLR expression, and phosphorylation of ERK1/2 in response to pam3Cys a TLR-1/2 ligand. Proportions and numbers of CD14++(high)CD16+ and CD14+(low)CD16+ monocytes were significantly increased, whereas proportions of CD14+(low)CD16− monocytes were decreased in aged subjects as compared to young subjects. In aged subjects, IL-6 production by all four subsets of monocytes was significantly decreased, whereas TNF-α production was decreased in monocyte subsets, except the CD14+(low)CD16− subset. A significantly reduced expression of TLR1 was observed in CD14++(high)CD16+ and CD14+(low)CD16+ monocyte subsets in aged subjects. Furthermore, following pam3Cys stimulation, ERK1/2 phosphorylation was significantly lower in CD14+(low)CD16+, CD14++(high)CD16+, and CD14+(low)CD16− subsets of monocytes from aged subjects. This is the first study of four subpopulations of monocytes in aging, which demonstrates that their functions are differentially impaired with regard to the production of cytokines, expression of TLR, and signaling via the ERK–MAPK pathway. Finally, changes in the number of monocyte subsets, and impairment of TLR1 expression, TNF-α production, and EK1/2 phosphorylation was more consistent in CD16+ monocyte subsets regardless of expression of CD14high or CD14+low, therefore highlighting the significance of further subdivision of monocytes into four subpopulations

    An iron-based beverage, HydroFerrate fluid (MRN-100), alleviates oxidative stress in murine lymphocytes in vitro

    Get PDF
    BackgroundSeveral studies have examined the correlation between iron oxidation and H2O2 degradation. The present study was carried out to examine the protective effects of MRN-100 against stress-induced apoptosis in murine splenic cells in vitro. MRN-100, or HydroFerrate fluid, is an iron-based beverage composed of bivalent and trivalent ferrates.MethodsSplenic lymphocytes from mice were cultured in the presence or absence of MRN-100 for 2 hrs and were subsequently exposed to hydrogen peroxide (H2O2) at a concentration of 25 μM for 14 hrs. Percent cell death was examined by flow cytometry and trypan blue exclusion. The effect of MRN-100 on Bcl-2 and Bax protein levels was determined by Western blot.ResultsResults show, as expected, that culture of splenic cells with H2O2 alone results in a significant increase in cell death (apoptosis) as compared to control (CM) cells. In contrast, pre-treatment of cells with MRN-100 followed by H2O2 treatment results in significantly reduced levels of apoptosis. In addition, MRN-100 partially prevents H2O2-induced down-regulation of the anti-apoptotic molecule Bcl-2 and upregulation of the pro-apoptotic molecule Bax.ConclusionOur findings suggest that MRN-100 may offer a protective effect against oxidative stress-induced apoptosis in lymphocytes

    Leptin Activates Human B Cells to Secrete TNF-α, IL-6, and IL-10 via JAK2/STAT3 and p38MAPK/ERK1/2 Signaling Pathway

    Get PDF
    Leptin, one of the adipokines, functions as a hormone and a cytokine. In this investigation, we show for the first time that leptin, in a concentration-dependent manner, activates human peripheral blood B cells to induce secretion of IL-6, IL-10, and TNF-α. Leptin increased B cells expressing CD25 and HLA-DR. Leptin induces phosphorylation of Janus activation kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), p38 mitogen-activated protein kinase (p38MAPK), and extracellular signal-regulated kinase (ERK1/2). Furthermore, leptin-induced cytokine secretion by B cells was blocked by inhibitors of JAK2, STAT3, p38MAPK, and ERK1/2. These data demonstrate that leptin activates human B cells to secrete cytokines via activation of JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathways, which may contribute to its inflammatory and immunoregulatory properties

    Reversal of oxidative stress-induced apoptosis in T and B lymphocytes by Coenzyme Q10 (CoQ10).

    No full text
    Coenzyme Q10, (CoQ10) an electron transporter and an antioxidant, protects a variety of cell types against oxidative stress and apoptosis. However, protective effect of CoQ10 on oxidative stress-induced apoptosis in lymphocytes has not been studied in detail. In this study, we investigated the effect of CoQ10 on oxidative stress-induced apoptosis in lymphocytes. An exposure of peripheral blood lymphocytes to oxidative stressors, rotenone or hydrogen peroxide, lead to apoptosis. Pre-treatment of lymphocytes with CoQ10 resulted in a significantly reduced level of oxidative stress-induced apoptosis, which was associated with decreased reactive oxygen species production, an inhibition of mitochondrial membrane depolarization, and inhibition of activation of caspase-9 and caspase-3. Furthermore, CoQ10 inhibited oxidative stress induced apoptosis in both CD4+ T, and CD8+ T, and CD19+ B cells. Our findings suggest that CoQ10 may provide new therapeutic strategies for preventing oxidative stress-induced cell death and dysfunction in lymphocytes and lymphocyte subsets
    corecore