2,119 research outputs found
A Hybrid Cryptographic System for Secured Device to Device Communication
It is general fact that even after enormous expansion of wireless communication there are still dead regions that hampers the effective communication. With exponential rise in the smart phones, a new layer of communication has evolved that could address the concerns of dead regions and capacity barriers. D2D is the evolving communication technology which focuses on short distance hops between the public devices to reach the destination. The major drawback of this technology is that most of the devices are public hence trustworthiness of the entire channel needs to be addressed in order to make it a viable solution. In this paper, we introduce a novel hybrid cryptographic approach that could address multiple eavesdroppers’ scenario. This approach incorporates both Huffman coding and Binary coding to enhance the crypto benefits for the information transmitted over D2D channel that consists of several public devices. The dual-crypto nature of the proposed algorithm offers higher efficiency, better security and improved key transmission. Thus, the proposed hybrid cryptographic approach is robust in nature while easy and simple to operate. In addition, the proposed approach could recover the original information without any distortion from the encrypted data making the approach lossless in nature. Further simulation results prove that the proposed offers confidentiality to the transmitted to data while addressing the network capacity crunch
Agricultural Management through Wireless Sensors and Internet of Things
Agriculture plays a significant role in most countries and there is an enoromous need for this industry to become “Smart”. The Industry is now moving towards agricultural modernization by using modern smart technologies to find solutions for effective utilization of scarce resources there by meeting the ever increasing consumtion needs of global population. With the advent of Internet of Things and Digital transformation of rural areas, these technologies can be leveraged to remotely monitor soil moisture, crop growth and take preventive measures to detect crop damages and threats. Utilize artificial intelligence based analytics to quickly analyze operational data combined with 3rd party information, such as weather services, expert advises etc., to provide new insights and improved decision making there by enabling farmers to perform “Smart Agriculture”. Remote management of agricultural activities and their automation using new technologies is the area of focus for this research activity. A solar powered remote management and automation system for agricultural activities through wireless sensors and Internet of Things comprising, a hardware platform based on Raspberry Pi Micro controller configured to connect with a user device and accessed through the internet network. The data collection unit comprises a set of wireless sensors for sensing agricultural activities and collecting data related to agricultural parameters; the base station unit comprising: a data logger; a server; and a software application for processing, collecting, and sending the data to the user device. The user device ex: mobile, tablet etc. can be connected to an internet network, whereby an application platform (mobile-app) installed in the user device facilitates in displaying a list of wireless sensor collected data using Internet of Things and a set of power buttons. This paper is a study and proposal paper which discusses the factors and studies that lead towards this patent pending invention, AGRIPI
Superconductivity in Ru substituted BaFe2-xRuxAs2
The occurrence of bulk superconductivity at ~22 K is reported in
polycrystalline samples of BaFe2-xRuxAs2 for nominal Ru content in the range of
x=0.75 to 1.125. A systematic suppression of the spin density wave transition
temperature (TSDW) precedes the appearance of superconductivity in the system.
A phase diagram is proposed based on the measured TSDW and superconducting
transition temperature (TC) variations as a function of Ru composition. Band
structure calculations, indicate introduction of electron carriers in the
system upon Ru substitutiom. The calculated magnetic moment on Fe shows a
minimum at x=1.0, suggesting that the suppression of the magnetic moment is
associated with the emergence of superconductivity. Results of low temperature
and high field Mossbauer measurements are presented. These indicate weakening
of magnetic interaction with Ru substitutionComment: 20 pages 10 figure
Autopilot quadcopter
The objective of this undertaking was to plan the frameworks & calculations important to permit a quadcopter to self-sufficient find & arrive on a station. The motivation behind this framework was to diagram a structure for a quadcopterrelated information accumulation or reconnaissance framework[1]so as to adapts to a generally short battery working capability of these very cell phones by reliably finding the AAV securely in an assigned area is energized. The Robotics ArduCopter picked as the quadcopter stage as it is prepared to do self-rulingly drifting set up&is fit for conveying a payload, for example, the camera used to decide the area of the dock. A framework was conceived with the end goal that the quadcopter can accurately decide the area[2] of an objective ground station while floating&afterward arrive when over the objective. Just economically accessible parts&free programming were utilized to with the goal that the whole docking framework is effortlessly open to future analysts&UAV fans
Anisotropic Local Stress and Particle Hopping in a Deeply Supercooled Liquid
The origin of the microscopic motions that lead to stress relaxation in
deeply supercooled liquid remains unclear. We show that in such a liquid the
stress relaxation is locally anisotropic which can serve as the driving force
for the hopping of the system on its free energy surface. However, not all
hopping are equally effective in relaxing the local stress, suggesting that
diffusion can decouple from viscosity even at local level. On the other hand,
orientational relaxation is found to be always coupled to stress relaxation.Comment: 4 pages, 3 figure
Potential Energy Landscape Equation of State
Depth, number, and shape of the basins of the potential energy landscape are
the key ingredients of the inherent structure thermodynamic formalism
introduced by Stillinger and Weber [F. H. Stillinger and T. A. Weber, Phys.
Rev. A 25, 978 (1982)]. Within this formalism, an equation of state based only
on the volume dependence of these landscape properties is derived. Vibrational
and configurational contributions to pressure are sorted out in a transparent
way. Predictions are successfully compared with data from extensive molecular
dynamics simulations of a simple model for the fragile liquid orthoterphenyl.Comment: RevTeX4, 4 pages, 5 figure
Energy landscape of a Lennard-Jones liquid: Statistics of stationary points
Molecular dynamics simulations are used to generate an ensemble of saddles of
the potential energy of a Lennard-Jones liquid. Classifying all extrema by
their potential energy u and number of unstable directions k, a well defined
relation k(u) is revealed. The degree of instability of typical stationary
points vanishes at a threshold potential energy, which lies above the energy of
the lowest glassy minima of the system. The energies of the inherent states, as
obtained by the Stillinger-Weber method, approach the threshold energy at a
temperature close to the mode-coupling transition temperature Tc.Comment: 4 RevTeX pages, 6 eps figures. Revised versio
Liquid Limits: The Glass Transition and Liquid-Gas Spinodal Boundaries of Metastable Liquids
The liquid-gas spinodal and the glass transition define ultimate boundaries
beyond which substances cannot exist as (stable or metastable) liquids. The
relation between these limits is analyzed {\it via} computer simulations of a
model liquid. The results obtained indicate that the liquid - gas spinodal and
the glass transition lines intersect at a finite temperature, implying a glass
- gas mechanical instability locus at low temperatures. The glass transition
lines obtained by thermodynamic and dynamic criteria agree very well with each
other.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let
- …