1 research outputs found

    Zeolite structure determination using genetic algorithms and geometry optimisation

    Full text link
    [EN] The recently presented software zeoGAsolver is discussed, which is based on genetic algorithms, with domain-dependent crossover and selection operators that maintain the size of the population in successive iterations while improving the average fitness. Using the density, cell parameters, and symmetry (or candidate symmetries) of a zeolite sample whose resolution can not be achieved by analysis of the XRD (X-ray diffraction) data, the software attempts to locate the coordinates of the T-atoms of the zeolite unit cell employing a function of fitness' (F), which is defined through the different contributions to the penalties' (P) as F = 1/(1 + P). While testing the software to find known zeolites such as LTA (zeolite A), AEI (SSZ-39), ITW (ITQ-12) and others, the algorithm has found not only most of the target zeolites but also seven new hypothetical zeolites whose feasibility is confirmed by energetic and structural criteria.G. S. thanks the Spanish government for the provision of the Severo Ochoa (SEV 2016-0683), CTQ2015-70126-R and MAT2015-71842-P projects.Liu, X.; Valero Cubas, S.; Argente, E.; Sastre Navarro, GI. (2018). Zeolite structure determination using genetic algorithms and geometry optimisation. Faraday Discussions. 211:103-115. https://doi.org/10.1039/C8FD00035BS103115211Liu, X., Valero, S., Argente, E., Botti, V., & Sastre, G. (2015). The importance of T⋯T⋯T angles in the feasibility of zeolites. Zeitschrift für Kristallographie - Crystalline Materials, 230(5). doi:10.1515/zkri-2014-1801C. Baerlocher , L. B.McCusker and D. H.Olson , Atlas of Zeolite Framework Types , Elsevier , 6 th revised edn, 2007 , (176 structures); the web version [ www.iza-structure.org ] currently contains 232 structuresDelgado Friedrichs, O., & Huson, D. H. (1999). Tiling Space by Platonic Solids, I. Discrete & Computational Geometry, 21(2), 299-315. doi:10.1007/pl00009423Friedrichs, O. D., Dress, A. W. M., Huson, D. H., Klinowski, J., & Mackay, A. L. (1999). Systematic enumeration of crystalline networks. Nature, 400(6745), 644-647. doi:10.1038/23210Treacy, M. M. J., Rivin, I., Balkovsky, E., Randall, K. H., & Foster, M. D. (2004). Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs. Microporous and Mesoporous Materials, 74(1-3), 121-132. doi:10.1016/j.micromeso.2004.06.013M. D. Foster and M. M. J.Treacy , Database of Hypothetical Zeolite Structures , http://www.hypotheticalzeolites.net/NEWDATABASE/SILVER_UNIQ/query.phpEarl, D. J., & Deem, M. W. (2006). Toward a Database of Hypothetical Zeolite Structures. Industrial & Engineering Chemistry Research, 45(16), 5449-5454. doi:10.1021/ie0510728Román-Román, E. I., & Zicovich-Wilson, C. M. (2015). The role of long-range van der Waals forces in the relative stability of SiO 2 -zeolites. Chemical Physics Letters, 619, 109-114. doi:10.1016/j.cplett.2014.11.044M. O’Keeffe and B. G.Hyde , The role of nonbonded forces in crystals , Structure and Bonding in Crystals , Academic Press , New York , 1981 , vol. 1 , ch. 10, pp. 227–254Bnmner, G. O., & Meier, W. M. (1989). Framework density distribution of zeolite-type tetrahedral nets. Nature, 337(6203), 146-147. doi:10.1038/337146a0Zwijnenburg, M. A., & Bell, R. G. (2008). Absence of Limitations on the Framework Density and Pore Size of High-Silica Zeolites. Chemistry of Materials, 20(9), 3008-3014. doi:10.1021/cm702175qLi, Y., Yu, J., & Xu, R. (2013). Criteria for Zeolite Frameworks Realizable for Target Synthesis. Angewandte Chemie International Edition, 52(6), 1673-1677. doi:10.1002/anie.201206340Majda, D., Paz, F. A. A., Friedrichs, O. D., Foster, M. D., Simperler, A., Bell, R. G., & Klinowski, J. (2008). Hypothetical Zeolitic Frameworks:  In Search of Potential Heterogeneous Catalysts. The Journal of Physical Chemistry C, 112(4), 1040-1047. doi:10.1021/jp0760354Deem, M. W., & Newsam, J. M. (1992). Framework crystal structure solution by simulated annealing: test application to known zeolite structures. Journal of the American Chemical Society, 114(18), 7189-7198. doi:10.1021/ja00044a035Pagola, S., & Stephens, P. W. (2010). PSSP, a computer program for the crystal structure solution of molecular materials from X-ray powder diffraction data. Journal of Applied Crystallography, 43(2), 370-376. doi:10.1107/s0021889810005509Falcioni, M., & Deem, M. W. (1999). A biased Monte Carlo scheme for zeolite structure solution. The Journal of Chemical Physics, 110(3), 1754-1766. doi:10.1063/1.477812Li, Y., Yu, J., & Xu, R. (2012). FraGen: a computer program for real-space structure solution of extended inorganic frameworks. Journal of Applied Crystallography, 45(4), 855-861. doi:10.1107/s002188981201878xKariuki, B. M., Serrano-González, H., Johnston, R. L., & Harris, K. D. M. (1997). The application of a genetic algorithm for solving crystal structures from powder diffraction data. Chemical Physics Letters, 280(3-4), 189-195. doi:10.1016/s0009-2614(97)01156-1Woodley, S. M., Battle, P. D., Gale, J. D., & Richard A. Catlow, C. (1999). The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Physical Chemistry Chemical Physics, 1(10), 2535-2542. doi:10.1039/a901227cTremayne, M., Seaton, C. C., & Glidewell, C. (2002). Structures of three substituted arenesulfonamides from X-ray powder diffraction data using the differential evolution technique. Acta Crystallographica Section B Structural Science, 58(5), 823-834. doi:10.1107/s0108768102011928Le Bail, A. (2005). Inorganic structure prediction withGRINSP. Journal of Applied Crystallography, 38(2), 389-395. doi:10.1107/s0021889805002384Woodley, S. M., Catlow, C. R. A., Battle, P. D., & Gale, J. D. (2004). The prediction of inorganic crystal framework structures using excluded regions within a genetic algorithm approach. Chemical Communications, (1), 22. doi:10.1039/b312526bMellot Draznieks, C., Newsam, J. M., Gorman, A. M., Freeman, C. M., & Férey, G. (2000). De Novo Prediction of Inorganic Structures Developed through Automated Assembly of Secondary Building Units (AASBU Method). Angewandte Chemie International Edition, 39(13), 2270-2275. doi:10.1002/1521-3773(20000703)39:133.0.co;2-aMellot-Draznieks, C., Girard, S., Férey, G., Schön, J. C., Cancarevic, Z., & Jansen, M. (2002). Computational Design and Prediction of Interesting Not-Yet-Synthesized Structures of Inorganic Materials by Using Building Unit Concepts. Chemistry - A European Journal, 8(18), 4102-4113. doi:10.1002/1521-3765(20020916)8:183.0.co;2-3Mellot-Draznieks, C., Girard, S., & Férey, G. (2002). Novel Inorganic Frameworks Constructed from Double-Four-Ring (D4R) Units:  Computational Design, Structures, and Lattice Energies of Silicate, Aluminophosphate, and Gallophosphate Candidates. Journal of the American Chemical Society, 124(51), 15326-15335. doi:10.1021/ja020999lAbdelkafi, O., Idoumghar, L., Lepagnot, J., Paillaud, J.-L., Deroche, I., Baumes, L., & Collet, P. (2017). Using a novel parallel genetic hybrid algorithm to generate and determine new zeolite frameworks. Computers & Chemical Engineering, 98, 50-60. doi:10.1016/j.compchemeng.2016.11.036Baumes, L. A., Kruger, F., Jimenez, S., Collet, P., & Corma, A. (2011). Boosting theoretical zeolitic framework generation for the determination of new materials structures using GPU programming. Physical Chemistry Chemical Physics, 13(10), 4674. doi:10.1039/c0cp02833aX. Liu , S.Valero , E.Argente and G.Sastre ; Determining zeolite structures with a domain-dependent genetic algorithm ; Iberian Conference on Information Systems and Technologies, CISTI , 2017 , 10.23919/CISTI.2017.7976059Liu, X., Argente, E., Valero, S., & Sastre, G. (2017). Applying Genetic Algorithms in Chemical Engineering for Determining Zeolite Structures. Advances in Intelligent Systems and Computing, 34-43. doi:10.1007/978-3-319-67180-2_4Sastre, G., & Gale, J. D. (2001). ZeoTsites: a code for topological and crystallographic tetrahedral sites analysis in zeolites and zeotypes. Microporous and Mesoporous Materials, 43(1), 27-40. doi:10.1016/s1387-1811(00)00344-9Villamena, F. A. (2009). Superoxide Radical Anion Adduct of 5,5-Dimethyl-1-pyrrolineN-Oxide. 5. Thermodynamics and Kinetics of Unimolecular Decomposition. The Journal of Physical Chemistry A, 113(22), 6398-6403. doi:10.1021/jp902269tBermúdez, D., & Sastre, G. (2017). Calculation of pore diameters in zeolites. Theoretical Chemistry Accounts, 136(10). doi:10.1007/s00214-017-2143-6Bushuev, Y. G., & Sastre, G. (2010). Feasibility of Pure Silica Zeolites. The Journal of Physical Chemistry C, 114(45), 19157-19168. doi:10.1021/jp107296eSastre, G. (2014). Computational study of diffusion of propane in small pore acidic zeotypes AFX and AEI. Catalysis Today, 226, 25-36. doi:10.1016/j.cattod.2013.07.021Ghysels, A., Moors, S. L. C., Hemelsoet, K., De Wispelaere, K., Waroquier, M., Sastre, G., & Van Speybroeck, V. (2015). Shape-Selective Diffusion of Olefins in 8-Ring Solid Acid Microporous Zeolites. The Journal of Physical Chemistry C, 119(41), 23721-23734. doi:10.1021/acs.jpcc.5b06010Sanders, M. J., Leslie, M., & Catlow, C. R. A. (1984). Interatomic potentials for SiO2. Journal of the Chemical Society, Chemical Communications, (19), 1271. doi:10.1039/c39840001271Sastre, G., & Corma, A. (2006). Rings and Strain in Pure Silica Zeolites. The Journal of Physical Chemistry B, 110(36), 17949-17959. doi:10.1021/jp060505xVessal, B., Leslie, M., & Catlow, C. R. A. (1989). Molecular Dynamics Simulation of Silica Glass. Molecular Simulation, 3(1-3), 123-136. doi:10.1080/08927028908034623O’Keeffe, M., & Hyde, B. G. (1978). On Si—O—Si configurations in silicates. Acta Crystallographica Section B, 34(1), 27-32. doi:10.1107/s0567740878014557Wragg, D. S., Morris, R. E., & Burton, A. W. (2008). Pure Silica Zeolite-type Frameworks: A Structural Analysis. Chemistry of Materials, 20(4), 1561-1570. doi:10.1021/cm071824jJ.-R. Hill , C. M.Freeman and L.Subramanian , Use of force fields in materials modeling , Rev. Comput. Chem. , ed. K. B. Lipkowitz and D. B. Boyd , Wiley-VCH , New York , 2000 , vol. 16 , pp. 141–216Combariza, A. F., Gomez, D. A., & Sastre, G. (2013). Simulating the properties of small pore silicazeolites using interatomic potentials. Chem. Soc. Rev., 42(1), 114-127. doi:10.1039/c2cs35243eKnott, B. C., Nimlos, C. T., Robichaud, D. J., Nimlos, M. R., Kim, S., & Gounder, R. (2017). Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 8(2), 770-784. doi:10.1021/acscatal.7b03676Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 93(4), 629-637. doi:10.1039/a606455hGale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation, 29(5), 291-341. doi:10.1080/0892702031000104887Togo, A., & Tanaka, I. (2015). First principles phonon calculations in materials science. Scripta Materialia, 108, 1-5. doi:10.1016/j.scriptamat.2015.07.02
    corecore